Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2003, Volume 58, Issue 6, Pages 1213–1214
DOI: https://doi.org/10.1070/RM2003v058n06ABEH000688
(Mi rm688)
 

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

A limit theorem for the number of times the envelope of a Gaussian stationary stochastic process exceeds a high value

A. A. Rusakov

M. V. Lomonosov Moscow State University
References:
Accepted: 23.09.2003
Bibliographic databases:
Document Type: Article
MSC: Primary 60G15; Secondary 60G70
Language: English
Original paper language: Russian
Citation: A. A. Rusakov, “A limit theorem for the number of times the envelope of a Gaussian stationary stochastic process exceeds a high value”, Russian Math. Surveys, 58:6 (2003), 1213–1214
Citation in format AMSBIB
\Bibitem{Rus03}
\by A.~A.~Rusakov
\paper A~limit theorem for the number of times the envelope of a~Gaussian stationary stochastic process exceeds a~high value
\jour Russian Math. Surveys
\yr 2003
\vol 58
\issue 6
\pages 1213--1214
\mathnet{http://mi.mathnet.ru/eng/rm688}
\crossref{https://doi.org/10.1070/RM2003v058n06ABEH000688}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2054103}
\zmath{https://zbmath.org/?q=an:1053.60511}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2003RuMaS..58.1213R}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000221152300015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-2442618323}
Linking options:
  • https://www.mathnet.ru/eng/rm688
  • https://doi.org/10.1070/RM2003v058n06ABEH000688
  • https://www.mathnet.ru/eng/rm/v58/i6/p163
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:456
    Russian version PDF:260
    English version PDF:15
    References:67
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025