Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2022, Volume 19, Issue 1, Pages 49–65
DOI: https://doi.org/10.33048/semi.2022.19.005
(Mi semr1480)
 

This article is cited in 3 scientific papers (total in 3 papers)

Mathematical logic, algebra and number theory

Uniform $m$-equivalences and numberings of classical systems

N. Kh. Kasymov, R. N. Dadazhanov, S. K. Zhavliev

National University of Uzbekistan, 4, University str., Tashkent, 100174, Uzbekistan
Full-text PDF (401 kB) Citations (3)
References:
Abstract: The paper considers the representability of algebraic structures (groups, lattices, semigroups, etc.) over equivalence relations on natural numbers. The concept of a (uniform) $m$-equivalence is studied. It is proved that the numbering equivalence of any numbered group is a uniform $m$-equivalence. On the other hand, we construct an example of a uniform $m$-equivalence over which no group is representable. Additionally we show that there exists a positive equivalence over which no upper (lower) semilattice is representable.
Keywords: uniform $m$-equivalence, group, lattice, field.
Received March 18, 2021, published January 19, 2022
Bibliographic databases:
Document Type: Article
UDC: 510.5
MSC: 03D45
Language: English
Citation: N. Kh. Kasymov, R. N. Dadazhanov, S. K. Zhavliev, “Uniform $m$-equivalences and numberings of classical systems”, Sib. Èlektron. Mat. Izv., 19:1 (2022), 49–65
Citation in format AMSBIB
\Bibitem{KasDadJav22}
\by N.~Kh.~Kasymov, R.~N.~Dadazhanov, S.~K.~Zhavliev
\paper Uniform $m$-equivalences and numberings of classical systems
\jour Sib. \`Elektron. Mat. Izv.
\yr 2022
\vol 19
\issue 1
\pages 49--65
\mathnet{http://mi.mathnet.ru/semr1480}
\crossref{https://doi.org/10.33048/semi.2022.19.005}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4377433}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000762938900005}
Linking options:
  • https://www.mathnet.ru/eng/semr1480
  • https://www.mathnet.ru/eng/semr/v19/i1/p49
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025