Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2022, Volume 19, Issue 1, Pages 211–236
DOI: https://doi.org/10.33048/semi.2022.19.016
(Mi semr1493)
 

Mathematical logic, algebra and number theory

Gröbner–Shirshov basis and Hochschild cohomology of the group $\Gamma ^4_5$

Hassan Alhussein

Novosibirsk State University of Economics and Management, Russia, 52, Kamenskaya str., Novosibirsk, 630099, Russia
References:
DOI: https://doi.org/10.33048/semi.2022.19.016
Abstract: In this paper, we construct a Gröbner—Shirshov basis for the group $\Gamma^4_5$ with respect to the tower order on the words. By using this result, we apply the discrete algebraic Morse theory to find explicitly the first two differentials of the Anick resolution for $\Gamma^4_5$, and calculate the first and second Hochschild cohomology groups of the group algebra of $\Gamma^4_5$ with coefficients in the trivial $1$-dimensional bimodule over a field $\mathbb{k}$ of characteristic zero.
Keywords: Gröbner—Shirshov basis, Anick resolution, Hochschild cohomology.
Received October 11, 2021, published April 4, 2022
Bibliographic databases:
Document Type: Article
UDC: 512.6
MSC: 16E40
Language: English
Citation: Hassan Alhussein, “Gröbner–Shirshov basis and Hochschild cohomology of the group $\Gamma ^4_5$”, Sib. Èlektron. Mat. Izv., 19:1 (2022), 211–236
Citation in format AMSBIB
\Bibitem{Alh22}
\by Hassan~Alhussein
\paper Gr\"obner--Shirshov basis and Hochschild cohomology of the group $\Gamma ^4_5$
\jour Sib. \`Elektron. Mat. Izv.
\yr 2022
\vol 19
\issue 1
\pages 211--236
\mathnet{http://mi.mathnet.ru/semr1493}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4407912}
Linking options:
  • https://www.mathnet.ru/eng/semr1493
  • https://www.mathnet.ru/eng/semr/v19/i1/p211
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025