|
Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2022, Volume 19, Issue 1, Pages 237–240 DOI: https://doi.org/10.33048/semi.2022.19.017
(Mi semr1494)
|
|
|
|
Mathematical logic, algebra and number theory
Finite groups whose maximal subgroups have only soluble proper subgroups
D. V. Lytkinaabc, A. Kh. Zhurtovd a Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 2, Pirogova str., Novosibirsk, 630090, Russia
c Siberian State University of telecommunications and information sciences, 86, Kirova str., Novosibirsk, 630102, Russia
d Kabardin-Balkarian State University, 173, Chernyshevskogo str., Nalchik, 360004, Russia
DOI:
https://doi.org/10.33048/semi.2022.19.017
Abstract:
We give a description of a finite group whose maximal subgroups possess only soluble proper subgroups, which implies the answer to the well-known question on composition factors of finite groups, whose second maximal subgroups are soluble.
Keywords:
finite group, maximal subgroup, solubility.
Received March 7, 2022, published April 8, 2022
Citation:
D. V. Lytkina, A. Kh. Zhurtov, “Finite groups whose maximal subgroups have only soluble proper subgroups”, Sib. Èlektron. Mat. Izv., 19:1 (2022), 237–240
Linking options:
https://www.mathnet.ru/eng/semr1494 https://www.mathnet.ru/eng/semr/v19/i1/p237
|
|