Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2024, Volume 21, Issue 2, Pages 978–989
DOI: https://doi.org/10.33048/semi.2024.21.065
(Mi semr1728)
 

Real, complex and functional analysis

On the uniform boundedness of Vallée Poussin means in the system of Meixner polynomials

R. M. Gadzhimirzaev

Department of Mathematics and Computer Science, Dagestan Federal Research Center of the RAS, st. M.Gadzhieva, 45, 367032, Makhachkala, Russia
References:
DOI: https://doi.org/10.33048/semi.2024.21.065
Abstract: Approximation properties of the de la Vallée Poussin means $V_{n+m,N}^\alpha(f,x)$ of Fourier–Meixner sums are studied. In particular, for $an\le m\le bn$ and $n+m\le \lambda N$ the existence of a constant $c(a,b,\alpha,\lambda)$ is established such that $\|V^\alpha_{n+m,N}(f)\|\le c(a,b,\alpha,\lambda)\|f\|$, where $\|f\|$ is the uniform norm of the function $f$ on the grid $\Omega_\delta$.
Keywords: approximation properties, Meixner polynomials, Fourier series, de la Vallée Poussin means.
Received May 14, 2024, published November 1, 2024
Document Type: Article
UDC: 517.521
MSC: 41A10
Language: Russian
Citation: R. M. Gadzhimirzaev, “On the uniform boundedness of Vallée Poussin means in the system of Meixner polynomials”, Sib. Èlektron. Mat. Izv., 21:2 (2024), 978–989
Citation in format AMSBIB
\Bibitem{Gad24}
\by R.~M.~Gadzhimirzaev
\paper On the uniform boundedness of Vall\'ee Poussin means in the system of Meixner polynomials
\jour Sib. \`Elektron. Mat. Izv.
\yr 2024
\vol 21
\issue 2
\pages 978--989
\mathnet{http://mi.mathnet.ru/semr1728}
Linking options:
  • https://www.mathnet.ru/eng/semr1728
  • https://www.mathnet.ru/eng/semr/v21/i2/p978
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:62
    Full-text PDF :23
    References:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025