Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2024, Volume 21, Issue 2, Pages B171–B202
DOI: https://doi.org/10.33048/semi.2024.21.B10
(Mi semr1779)
 

Collection of papers in honor of Sergey Godunov (Editors: Yu. L. Trakhinin, M.A. Shishlenin)

On convergence of numerical schemes when calculating Riemann problems for shallow water equations

O. A. Kovyrkina, V. V. Ostapenko, E. I. Polunina

Lavrentyev Institute of Hydrodynamics of SB RAS, Lavrentyev Prospect, 15, 630090, Novosibirsk, Russia
References:
DOI: https://doi.org/10.33048/semi.2024.21.B10
Abstract: We investigate the convergence of four high order numerical schemes when calculating Riemann problems for shallow water equations. We compare a couple of the NFC (Nonlinear Flux Correction) schemes: the second order TVD (Total Variation Diminishing) and the fifth-order in space, the third-order in time A-WENO (Alternative Weighted Essentially Non-Oscillatory) with a couple of the third-order QL (Quasi-Linear) schemes: RBM (Rusanov–Burstein–Mirin) and CWA (Compact high order Weak Approxiation), where nonlinear flux correction is not applied. It is shown that inside the shock influence areas for the NFC schemes, unlike the QL schemes, there is no uniform local convergence of the numerical solution to the exact constant one. At the same time, inside the centered rarefaction waves, solutions of these schemes with different orders converge to the different invariants of the exact solution: with the first order to the invariant that transferred along the characteristics outgoing from the center of the rarefaction wave; and with the order not lower than the second to the invariant that is constant inside the rarefaction wave. For numerical solutions of the studied schemes we perform the classification of various types of convergence to the corresponding exact solutions of the calculated Riemann problems.
Keywords: high-accuracy numerical schemes, Riemann problems for shallow water equations, local convergence of numerical solutions.
Funding agency Grant number
Russian Science Foundation 22-11-00060
The reported study was partially funded by the Russian Science Foundation (project no. 22-11-00060) Sections 5–7.
Received October 15, 2024, published December 31, 2024
Document Type: Article
UDC: 519.63
MSC: 65M06, 65M12
Language: English
Citation: O. A. Kovyrkina, V. V. Ostapenko, E. I. Polunina, “On convergence of numerical schemes when calculating Riemann problems for shallow water equations”, Sib. Èlektron. Mat. Izv., 21:2 (2024), B171–B202
Citation in format AMSBIB
\Bibitem{KovOstPol24}
\by O.~A.~Kovyrkina, V.~V.~Ostapenko, E.~I.~Polunina
\paper On~convergence of~numerical schemes when calculating Riemann problems for~shallow water equations
\jour Sib. \`Elektron. Mat. Izv.
\yr 2024
\vol 21
\issue 2
\pages B171--B202
\mathnet{http://mi.mathnet.ru/semr1779}
Linking options:
  • https://www.mathnet.ru/eng/semr1779
  • https://www.mathnet.ru/eng/semr/v21/i2/p171
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025