Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2024, Volume 21, Issue 2, Pages B203–B231
DOI: https://doi.org/10.33048/semi.2024.21.B11
(Mi semr1780)
 

Collection of papers in honor of Sergey Godunov (Editors: Yu. L. Trakhinin, M.A. Shishlenin)

Modeling the variability of seismic properties of frozen multiphase media depending on temperature

G. Reshetovaa, E. Romenskib

a Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Ac. Lavrentieva ave., 6, 630090, Novosibirsk, Russia
b Sobolev Institute of Mathematics SB RAS, Ac. Koptyug ave., 4, 630090, Novosibirsk, Russia
References:
DOI: https://doi.org/10.33048/semi.2024.21.B11
Abstract: A three-phase model of a deformable porous medium saturated with a mixture of liquid and gas is presented. The derivation of the model is based on the theory of Hyperbolic Thermodynamically Compatible systems (HTC) applied to a mixture of solid, liquid and gas. The resulting governing equations are hyperbolic and satisfy the laws of thermodynamics (energy conservation and entropy growth). Based on the formulated nonlinear model, governing equations for modeling the propagation of small amplitude seismic waves are obtained. These equations have been used to study the variability of wave fields caused by temperature changes in geological media with porous structures saturated with a mixture of liquid and gas. Numerical examples are presented to illustrate the peculiarities of wave propagation in media of varying porosity and different ratios of liquid and gas fractions. The finite difference scheme on staggered grids has been used for the numerical solution.
Keywords: Poroelasticity, three-phase flow, hyperbolic thermodynamically compatible model, wave propagation.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-281
This work is supported by the Mathematical Center in Akademgorodok under the agreement No. 075-15-2022-281 with the Ministry of Science and Higher Education of the Russian Federation
Document Type: Article
UDC: 519.63; 532.685
MSC: 76T99
Language: English
Citation: G. Reshetova, E. Romenski, “Modeling the variability of seismic properties of frozen multiphase media depending on temperature”, Sib. Èlektron. Mat. Izv., 21:2 (2024), B203–B231
Citation in format AMSBIB
\Bibitem{ResRom24}
\by G.~Reshetova, E.~Romenski
\paper Modeling the variability of seismic properties of frozen multiphase media depending on temperature
\jour Sib. \`Elektron. Mat. Izv.
\yr 2024
\vol 21
\issue 2
\pages B203--B231
\mathnet{http://mi.mathnet.ru/semr1780}
Linking options:
  • https://www.mathnet.ru/eng/semr1780
  • https://www.mathnet.ru/eng/semr/v21/i2/p203
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025