Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2014, Volume 11, Pages 915–920 (Mi semr536)  

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical logic, algebra and number theory

An example of differentially simple Lie algebra which is not a free module over its centroid

V. N. Zhelyabinab, M. E. Goncharova

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
Full-text PDF (491 kB) Citations (1)
References:
Abstract: In this work we construct an example of differentially simple Lie algebra $\Lambda(L(\mathbb{M}))$ over an algebraically closed field of zero characteristic, such that $\Lambda(L(\mathbb{M}))$ is a finitely-generated projective non-free module over its centroid.
Keywords: differentially simple algebra, projective module, Lie algebra, algebra of polynomials.
Received October 23, 2014, published December 5, 2014
Document Type: Article
UDC: 512.554
MSC: 17B20, 17D10
Language: Russian
Citation: V. N. Zhelyabin, M. E. Goncharov, “An example of differentially simple Lie algebra which is not a free module over its centroid”, Sib. Èlektron. Mat. Izv., 11 (2014), 915–920
Citation in format AMSBIB
\Bibitem{ZheGon14}
\by V.~N.~Zhelyabin, M.~E.~Goncharov
\paper An example of differentially simple Lie algebra which is not a free module over its centroid
\jour Sib. \`Elektron. Mat. Izv.
\yr 2014
\vol 11
\pages 915--920
\mathnet{http://mi.mathnet.ru/semr536}
Linking options:
  • https://www.mathnet.ru/eng/semr536
  • https://www.mathnet.ru/eng/semr/v11/p915
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025