Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2015, Volume 12, Pages 854–861
DOI: https://doi.org/10.17377/semi.2015.12.071
(Mi semr634)
 

Geometry and topology

On axisymmetric Helfrich surfaces

S. M. Cherosovaa, D. A. Nogovitsyna, E. I. Shamaevab

a Ammosov Northeastern Federal University, Kulakovskogo str., 48 677000, Yakutsk, Russia
b Sobolev Institute of Mathemathics SB RAS, Acad. Koptyug avenue, 4, 630090, Novosibirsk, Russia
References:
Abstract: In this paper we study axisymmetric Helfrich surfaces. We prove the convergence of the formal power series solution of the Euler–Lagrange equation for the Helfrich functional in a neighborhood of its singular point. We also prove the following inequality
$$ \lambda_v R^3+ (c^2+2\lambda_a)R^2-2cR+1\geqslant 0, $$
for a smooth axisymmetric Helfrich surfaces, that homeomorphic to a sphere, where $c$ is the spontaneous curvature of the surface, $\lambda_a$ and $\lambda_v$ are Lagrange multipliers, $R$ is the maximum distance between the axis of rotational symmetry and surface.
Keywords: Helfrich spheres of rotation, Delaunay surface of rotation, Willmore surface of rotation, Lobachevsky hyperbolic plane.
Funding agency Grant number
Russian Science Foundation 14-11-00441
This work is supported by the Russian Science Foundation under Grant No. 14-11-00441.
Received October 23, 2015, published November 24, 2015
Document Type: Article
UDC: 514.752
MSC: 53A05
Language: English
Citation: S. M. Cherosova, D. A. Nogovitsyn, E. I. Shamaev, “On axisymmetric Helfrich surfaces”, Sib. Èlektron. Mat. Izv., 12 (2015), 854–861
Citation in format AMSBIB
\Bibitem{CheNogSha15}
\by S.~M.~Cherosova, D.~A.~Nogovitsyn, E.~I.~Shamaev
\paper On axisymmetric Helfrich surfaces
\jour Sib. \`Elektron. Mat. Izv.
\yr 2015
\vol 12
\pages 854--861
\mathnet{http://mi.mathnet.ru/semr634}
\crossref{https://doi.org/10.17377/semi.2015.12.071}
Linking options:
  • https://www.mathnet.ru/eng/semr634
  • https://www.mathnet.ru/eng/semr/v12/p854
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:199
    Full-text PDF :85
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026