Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2015, Volume 12, Pages 910–929
DOI: https://doi.org/10.17377/semi.2015.12.077
(Mi semr640)
 

Geometry and topology

A combinatorial model of the Lipschitz metric for surfaces with punctures

V. A. Shastin

Laboratory of Quantum Topology, Chelyabinsk State University, Brat'ev Kashirinykh street 129, Chelyabinsk 454001, Russia
References:
Abstract: The zipped word length function introduced by Ivan Dynnikov in connection with the word problem in the mapping class groups of punctured surfaces is considered. We prove that the mapping class group with the metric determined by this function is quasi-isometric to the thick part of the Teichmüller space equipped with the Lipschitz metric.
Keywords: Mapping class group, Teichmüller space, Teichmüller metric, Thurston's asymmetric metric.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.Z50.31.0020
Received July 3, 2015, published December 3, 2015
Document Type: Article
UDC: 515.162
MSC: 57M07
Language: Russian
Citation: V. A. Shastin, “A combinatorial model of the Lipschitz metric for surfaces with punctures”, Sib. Èlektron. Mat. Izv., 12 (2015), 910–929
Citation in format AMSBIB
\Bibitem{Sha15}
\by V.~A.~Shastin
\paper A combinatorial model of the Lipschitz metric for surfaces with punctures
\jour Sib. \`Elektron. Mat. Izv.
\yr 2015
\vol 12
\pages 910--929
\mathnet{http://mi.mathnet.ru/semr640}
\crossref{https://doi.org/10.17377/semi.2015.12.077}
Linking options:
  • https://www.mathnet.ru/eng/semr640
  • https://www.mathnet.ru/eng/semr/v12/p910
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:221
    Full-text PDF :85
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025