Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 92–97
DOI: https://doi.org/10.17377/semi.2017.14.010
(Mi semr764)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical logic, algebra and number theory

On the ñomplexity of quasivariety lattices

S. M. Lutsak

The L.N. Gumilyov Eurasian National University, Satpaev str. 2, 010000, Astana, Kazahstan
Full-text PDF (153 kB) Citations (1)
References:
Abstract: We prove that any AD-class of algebraic structures of finite signature contains continuum many proper subclasses, which have the Nurakunov non-computability property, but which are not Q-universal (among those are almost all the known Q-universal quasivarieties nowadays). A similar result holds for some classes of algebraic structures of countable signature. This provides a negative answer to an open question.
Keywords: computable set, lattice, quasivariety, Q-universality.
Received November 14, 2016, published February 10, 2017
Bibliographic databases:
Document Type: Article
UDC: 512.56, 512.57
MSC: 06B15, 08C15
Language: Russian
Citation: S. M. Lutsak, “On the ñomplexity of quasivariety lattices”, Sib. Èlektron. Mat. Izv., 14 (2017), 92–97
Citation in format AMSBIB
\Bibitem{Lut17}
\by S.~M.~Lutsak
\paper On the ñomplexity of quasivariety lattices
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 92--97
\mathnet{http://mi.mathnet.ru/semr764}
\crossref{https://doi.org/10.17377/semi.2017.14.010}
Linking options:
  • https://www.mathnet.ru/eng/semr764
  • https://www.mathnet.ru/eng/semr/v14/p92
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025