Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 218–251
DOI: https://doi.org/10.17377/semi.2017.14.022
(Mi semr781)
 

This article is cited in 2 scientific papers (total in 2 papers)

Differentical equations, dynamical systems and optimal control

Variational principles and stability of the inviscid open flows

A. B. Morgulisab

a Southern Federal Univesity, 344099, Milchakova 8a, Rostov-na-Donu, Russia
b SMI VSC RAS, 362025, Vatutin str., 53. Vladikavkaz
References:
Abstract: In this article, we study the stability of the steady solutions of boundary value problems for ideal incompressible fluid flows through a given domain. For doing this we generalize Arnold's form of the direct Liapunov method (1966) that was being applied earlier to the cases of fully impermeable boundaries or periodic flows only. We ascertain a number of criteria for Liapunov stability or asymptotic stability as well as new classes of open flows possessing the mentioned properties. In addition, we prove that the occurrence of the recirculation areas is inevitable in rather wide classes of open channel flows.
Keywords: vortex flow, incompressible Euler equations, stability.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.1398.2014/K
Received August 17, 2016, published March 24, 2017
Document Type: Article
UDC: 517.958
MSC: 37L15, 35Q31, 76B47
Language: Russian
Citation: A. B. Morgulis, “Variational principles and stability of the inviscid open flows”, Sib. Èlektron. Mat. Izv., 14 (2017), 218–251
Citation in format AMSBIB
\Bibitem{Mor17}
\by A.~B.~Morgulis
\paper Variational principles and stability of the inviscid open flows
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 218--251
\mathnet{http://mi.mathnet.ru/semr781}
\crossref{https://doi.org/10.17377/semi.2017.14.022}
Linking options:
  • https://www.mathnet.ru/eng/semr781
  • https://www.mathnet.ru/eng/semr/v14/p218
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025