Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2017, Volume 13, 089, 17 pp.
DOI: https://doi.org/10.3842/SIGMA.2017.089
(Mi sigma1289)
 

This article is cited in 13 scientific papers (total in 13 papers)

A Universal Genus-Two Curve from Siegel Modular Forms

Andreas Malmendiera, Tony Shaskab

a Department of Mathematics and Statistics, Utah State University, Logan, UT 84322, USA
b Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309, USA
References:
Abstract: Let $\mathfrak{p} $ be any point in the moduli space of genus-two curves $\mathcal{M}_2$ and $K$ its field of moduli. We provide a universal equation of a genus-two curve $\mathcal C_{\alpha, \beta}$ defined over $K(\alpha, \beta)$, corresponding to $\mathfrak{p}$, where $\alpha $ and $\beta$ satisfy a quadratic $\alpha^2+ b \beta^2= c$ such that $b$ and $c$ are given in terms of ratios of Siegel modular forms. The curve $\mathcal C_{\alpha, \beta}$ is defined over the field of moduli $K$ if and only if the quadratic has a $K$-rational point $(\alpha, \beta)$. We discover some interesting symmetries of the Weierstrass equation of $\mathcal C_{\alpha, \beta}$. This extends previous work of Mestre and others.
Keywords: genus-two curves; Siegel modular forms.
Received: July 18, 2017; in final form November 25, 2017; Published online November 30, 2017
Bibliographic databases:
Document Type: Article
MSC: 14H10; 14H45
Language: English
Citation: Andreas Malmendier, Tony Shaska, “A Universal Genus-Two Curve from Siegel Modular Forms”, SIGMA, 13 (2017), 089, 17 pp.
Citation in format AMSBIB
\Bibitem{MalSha17}
\by Andreas~Malmendier, Tony~Shaska
\paper A Universal Genus-Two Curve from Siegel Modular Forms
\jour SIGMA
\yr 2017
\vol 13
\papernumber 089
\totalpages 17
\mathnet{http://mi.mathnet.ru/sigma1289}
\crossref{https://doi.org/10.3842/SIGMA.2017.089}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000417334000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85039045417}
Linking options:
  • https://www.mathnet.ru/eng/sigma1289
  • https://www.mathnet.ru/eng/sigma/v13/p89
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025