Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2019, Volume 15, 100, 11 pp.
DOI: https://doi.org/10.3842/SIGMA.2019.100
(Mi sigma1536)
 

Picard–Vessiot Extensions of Real Differential Fields

Teresa Crespoa, Zbigniew Hajtob

a Departament de Matemátiques i Informática, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
b Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Prof. S. Lojasiewicza 6, 30-348 Kraków, Poland
References:
Abstract: For a linear differential equation defined over a formally real differential field $K$ with real closed field of constants $k$, Crespo, Hajto and van der Put proved that there exists a unique formally real Picard–Vessiot extension up to $K$-differential automorphism. However such an equation may have Picard–Vessiot extensions which are not formally real fields. The differential Galois group of a Picard–Vessiot extension for this equation has the structure of a linear algebraic group defined over $k$ and is a $k$-form of the differential Galois group $H$ of the equation over the differential field $K\big(\sqrt{-1}\big)$. These facts lead us to consider two issues: determining the number of $K$-differential isomorphism classes of Picard–Vessiot extensions and describing the variation of the differential Galois group in the set of $k$-forms of $H$. We address these two issues in the cases when $H$ is a special linear, a special orthogonal, or a symplectic linear algebraic group and conclude that there is no general behaviour.
Keywords: real Picard–Vessiot theory, linear algebraic groups, group cohomology, real forms of algebraic groups.
Funding agency Grant number
Ministerio de Economía y Competitividad de España MTM2015-66716-P
Both authors acknowledge support of grant MTM2015-66716-P (MINECO/FEDER, UE).
Received: July 4, 2019; in final form December 22, 2019; Published online December 24, 2019
Bibliographic databases:
Document Type: Article
Language: English
Citation: Teresa Crespo, Zbigniew Hajto, “Picard–Vessiot Extensions of Real Differential Fields”, SIGMA, 15 (2019), 100, 11 pp.
Citation in format AMSBIB
\Bibitem{CreHaj19}
\by Teresa~Crespo, Zbigniew~Hajto
\paper Picard--Vessiot Extensions of Real Differential Fields
\jour SIGMA
\yr 2019
\vol 15
\papernumber 100
\totalpages 11
\mathnet{http://mi.mathnet.ru/sigma1536}
\crossref{https://doi.org/10.3842/SIGMA.2019.100}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000504212900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85077189095}
Linking options:
  • https://www.mathnet.ru/eng/sigma1536
  • https://www.mathnet.ru/eng/sigma/v15/p100
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025