Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2022, Volume 18, 088, 42 pp.
DOI: https://doi.org/10.3842/SIGMA.2022.088
(Mi sigma1884)
 

This article is cited in 1 scientific paper (total in 1 paper)

On Gorenstein Fano Threefolds with an Action of a Two-Dimensional Torus

Andreas Bäuerle, Jürgen Hausen

Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
Full-text PDF (545 kB) Citations (1)
References:
Abstract: We classify the non-toric, $\mathbb Q$-factorial, Gorenstein, log terminal Fano threefolds of Picard number one that admit an effective action of a two-dimensional algebraic torus.
Keywords: Fano threefolds, torus action.
Received: April 20, 2022; in final form November 7, 2022; Published online November 16, 2022
Bibliographic databases:
Document Type: Article
MSC: 14J45, 14J35, 14L30
Language: English
Citation: Andreas Bäuerle, Jürgen Hausen, “On Gorenstein Fano Threefolds with an Action of a Two-Dimensional Torus”, SIGMA, 18 (2022), 088, 42 pp.
Citation in format AMSBIB
\Bibitem{BauHau22}
\by Andreas~B\"auerle, J\"urgen~Hausen
\paper On Gorenstein Fano Threefolds with an Action of a Two-Dimensional Torus
\jour SIGMA
\yr 2022
\vol 18
\papernumber 088
\totalpages 42
\mathnet{http://mi.mathnet.ru/sigma1884}
\crossref{https://doi.org/10.3842/SIGMA.2022.088}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4509960}
Linking options:
  • https://www.mathnet.ru/eng/sigma1884
  • https://www.mathnet.ru/eng/sigma/v18/p88
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:125
    Full-text PDF :48
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025