Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2024, Volume 20, 065, 52 pp.
DOI: https://doi.org/10.3842/SIGMA.2024.065
(Mi sigma2067)
 

Adiabatic Limit, Theta Function, and Geometric Quantization

Takahiko Yoshida

Department of Mathematics, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
References:
Abstract: Let $\pi\colon (M,\omega)\to B$ be a non-singular Lagrangian torus fibration on a complete base $B$ with prequantum line bundle $\bigl(L,\nabla^L\bigr)\to (M,\omega)$. Compactness on $M$ is not assumed. For a positive integer $N$ and a compatible almost complex structure $J$ on $(M,\omega)$ invariant along the fiber of $\pi$, let $D$ be the associated Spin${}^c$ Dirac operator with coefficients in $L^{\otimes N}$. First, in the case where $J$ is integrable, under certain technical condition on $J$, we give a complete orthogonal system $\{ \vartheta_b\}_{b\in B_{\rm BS}}$ of the space of holomorphic $L^2$-sections of $L^{\otimes N}$ indexed by the Bohr–Sommerfeld points $B_{\rm BS}$ such that each $\vartheta_b$ converges to a delta-function section supported on the corresponding Bohr–Sommerfeld fiber $\pi^{-1}(b)$ by the adiabatic(-type) limit. We also explain the relation of $\vartheta_b$ with Jacobi's theta functions when $(M,\omega)$ is $T^{2n}$. Second, in the case where $J$ is not integrable, we give an orthogonal family $\big\{\widetilde{\vartheta}_b\big\}_ {b\in B_{\rm BS}}$ of $L^2$-sections of $L^{\otimes N}$ indexed by $B_{\rm BS}$ which has the same property as above, and show that each $D{\widetilde \vartheta}_b$ converges to $0$ by the adiabatic(-type) limit with respect to the $L^2$-norm.
Keywords: adiabatic limit, theta function, Lagrangian fibration, geometric quantization.
Funding agency Grant number
Japan Society for the Promotion of Science 15K04857
19K03479
This work is supported by Grant-in-Aid for Scientific Research (C) 15K04857 and 19K03479.
Received: March 20, 2023; in final form July 6, 2024; Published online July 19, 2024
Bibliographic databases:
Document Type: Article
MSC: 53D50, 58H15, 58J05
Language: English
Citation: Takahiko Yoshida, “Adiabatic Limit, Theta Function, and Geometric Quantization”, SIGMA, 20 (2024), 065, 52 pp.
Citation in format AMSBIB
\Bibitem{Yos24}
\by Takahiko~Yoshida
\paper Adiabatic Limit, Theta Function, and Geometric Quantization
\jour SIGMA
\yr 2024
\vol 20
\papernumber 065
\totalpages 52
\mathnet{http://mi.mathnet.ru/sigma2067}
\crossref{https://doi.org/10.3842/SIGMA.2024.065}
Linking options:
  • https://www.mathnet.ru/eng/sigma2067
  • https://www.mathnet.ru/eng/sigma/v20/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025