Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2024, Volume 20, 088, 16 pp.
DOI: https://doi.org/10.3842/SIGMA.2024.088
(Mi sigma2090)
 

On the Picard Group of the Moduli Space of Curves via $r$-Spin Structures

Danil Gubarevichab

a Laboratoire de Mathématiques de Versailles, UFR des Sciences, Université de Versailles Saint-Quentin en Yvelines, 45 avenue des États-Unis, 78035 Versailles, France
b Faculty of Mathematics, National Research University Higher School of Economics, 6 Usacheva Str., 119048 Moscow, Russia
References:
Abstract: In this paper, we obtain explicit expressions for Pandharipande–Pixton–Zvonkine relations in the second rational cohomology of $\overline{\mathcal M}_{g,n}$ and comparing the result with Arbarello–Cornalba's theorem we prove Pixton's conjecture in this case.
Keywords: moduli space of curves, tautological relations, cohomological field theories.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2021-608
The author is partially supported by International Laboratory of Cluster Geometry NRU HSE, RF Government grant, ag. no. 075-15-2021-608 dated 08.06.2021.
Received: January 5, 2022; in final form August 27, 2024; Published online October 6, 2024
Bibliographic databases:
Document Type: Article
MSC: 14H10, 14N35
Language: English
Citation: Danil Gubarevich, “On the Picard Group of the Moduli Space of Curves via $r$-Spin Structures”, SIGMA, 20 (2024), 088, 16 pp.
Citation in format AMSBIB
\Bibitem{Gub24}
\by Danil~Gubarevich
\paper On the Picard Group of the Moduli Space of Curves via $r$-Spin Structures
\jour SIGMA
\yr 2024
\vol 20
\papernumber 088
\totalpages 16
\mathnet{http://mi.mathnet.ru/sigma2090}
\crossref{https://doi.org/10.3842/SIGMA.2024.088}
Linking options:
  • https://www.mathnet.ru/eng/sigma2090
  • https://www.mathnet.ru/eng/sigma/v20/p88
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025