|
This article is cited in 12 scientific papers (total in 12 papers)
Stanilov–Tsankov–Videv Theory
Miguel Brozos-Vázqueza, Bernd Fiedlerb, Eduardo García-Ríoa, Peter Gilkeyc, Stana Nikčevićd, Grozio Stanilove, Yulian Tsankove, Ramón Vázquez-Lorenzoa, Veselin Videvf a Department of Geometry and Topology, Faculty of Mathematics, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
b Eichelbaumstr. 13, D-04249 Leipzig, Germany
c Mathematics Department, University of Oregon, Eugene Oregon 97403-1222, USA
d Mathematical Institute, SANU, Knez Mihailova 35, p.p. 367, 11001 Belgrade, Serbia
e Sofia University "St. Kl. Ohridski", Sofia, Bulgaria
f Mathematics Department, Thracian University, University Campus,
6000 Stara Zagora, Bulgaria
Abstract:
We survey some recent results concerning Stanilov–Tsankov–Videv theory, conformal Osserman geometry,
and Walker geometry which relate algebraic properties of the curvature operator to the underlying geometry of
the manifold.
Keywords:
algebraic curvature tensor; anti-self-dual; conformal Jacobi operator; conformal Osserman manifold; Jacobi operator; Jacobi–Tsankov; Jacobi–Videv; mixed-Tsankov; Osserman manifold; Ricci operator; self-dual; skew-symmetric curvature operator; skew-Tsankov; skew-Videv; Walker manifold; Weyl conformal curvature operator.
Received: August 7, 2007; in final form September 22, 2007; Published online September 28, 2007
Citation:
Miguel Brozos-Vázquez, Bernd Fiedler, Eduardo García-Río, Peter Gilkey, Stana Nikčević, Grozio Stanilov, Yulian Tsankov, Ramón Vázquez-Lorenzo, Veselin Videv, “Stanilov–Tsankov–Videv Theory”, SIGMA, 3 (2007), 095, 13 pp.
Linking options:
https://www.mathnet.ru/eng/sigma221 https://www.mathnet.ru/eng/sigma/v3/p95
|
|