Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2008, Volume 4, 086, 28 pp.
DOI: https://doi.org/10.3842/SIGMA.2008.086
(Mi sigma339)
 

Vertex Algebroids over Veronese Rings

Fyodor Malikov

Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA
References:
Abstract: We find a canonical quantization of Courant algebroids over Veronese rings. Part of our approach allows a semi-infinite cohomology interpretation, and the latter can be used to define sheaves of chiral differential operators on some homogeneous spaces including the space of pure spinors punctured at a point.
Keywords: differential graded algebra; vertex algebra; algebroid.
Received: July 28, 2008; in final form December 7, 2008; Published online December 13, 2008
Bibliographic databases:
Document Type: Article
MSC: 14Fxx, 81R10; 17B69
Language: English
Citation: Fyodor Malikov, “Vertex Algebroids over Veronese Rings”, SIGMA, 4 (2008), 086, 28 pp.
Citation in format AMSBIB
\Bibitem{Mal08}
\by Fyodor Malikov
\paper Vertex Algebroids over Veronese Rings
\jour SIGMA
\yr 2008
\vol 4
\papernumber 086
\totalpages 28
\mathnet{http://mi.mathnet.ru/sigma339}
\crossref{https://doi.org/10.3842/SIGMA.2008.086}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2470510}
\zmath{https://zbmath.org/?q=an:05555826}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267800086}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889235640}
Linking options:
  • https://www.mathnet.ru/eng/sigma339
  • https://www.mathnet.ru/eng/sigma/v4/p86
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025