Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2014, Volume 10, 102, 17 pp.
DOI: https://doi.org/10.3842/SIGMA.2014.102
(Mi sigma967)
 

This article is cited in 3 scientific papers (total in 3 papers)

Particle Motion in Monopoles and Geodesics on Cones

Maxence Mayrand

Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montreal, Quebec, Canada, H3A 0B9
Full-text PDF (505 kB) Citations (3)
References:
Abstract: The equations of motion of a charged particle in the field of Yang's $\mathrm{SU}(2)$ monopole in 5-dimensional Euclidean space are derived by applying the Kaluza–Klein formalism to the principal bundle $\mathbb{R}^8\setminus\{0\}\to\mathbb{R}^5\setminus\{0\}$ obtained by radially extending the Hopf fibration $S^7\to S^4$, and solved by elementary methods. The main result is that for every particle trajectory $\mathbf{r}:I\to\mathbb{R}^5\setminus\{0\}$, there is a 4-dimensional cone with vertex at the origin on which $\mathbf{r}$ is a geodesic. We give an explicit expression of the cone for any initial conditions.
Keywords: particle motion; monopoles; geodesics; cones.
Received: July 31, 2014; in final form November 1, 2014; Published online November 4, 2014
Bibliographic databases:
Document Type: Article
MSC: 70H06; 34A26; 53B50
Language: English
Citation: Maxence Mayrand, “Particle Motion in Monopoles and Geodesics on Cones”, SIGMA, 10 (2014), 102, 17 pp.
Citation in format AMSBIB
\Bibitem{May14}
\by Maxence~Mayrand
\paper Particle Motion in Monopoles and Geodesics on Cones
\jour SIGMA
\yr 2014
\vol 10
\papernumber 102
\totalpages 17
\mathnet{http://mi.mathnet.ru/sigma967}
\crossref{https://doi.org/10.3842/SIGMA.2014.102}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344400100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84909969659}
Linking options:
  • https://www.mathnet.ru/eng/sigma967
  • https://www.mathnet.ru/eng/sigma/v10/p102
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025