Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2019, Volume 22, Number 4, Pages 54–67
DOI: https://doi.org/10.33048/sibjim.2019.22.406
(Mi sjim1065)
 

This article is cited in 6 scientific papers (total in 6 papers)

Iterative approach to solving boundary integral equations in the two-dimensional vortex methods of computational hydrodynamics

E. A. Mikhailova, I. K. Marchevskiibc, K. S. Kuzminacb

a Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow
b Ivannikov Institute for System Programming of the RAS, ul. Aleksandra Solzhenitsyna 25, 109004 Moscow
c Bauman Moscow State Technical University, ul. Vtoraya Baumanskaya 5, 105005 Moscow
Full-text PDF (353 kB) Citations (6)
References:
Abstract: Under consideration are the issues of numerical solution of a boundary integral equation describing the vorticity generation process on the streamlined airfoils in meshless vortex methods. The traditional approach based on the quadrature method leads to the necessity of solving a system of linear algebraic equations with dense matrix. If we consider the system of airfoils moving relative to one another, this procedure has to be performed at each time step of the calculation, and its high computational complexity significantly reduces the efficiency of vortex methods. The transition from the traditional approach expressed by an integral equation of the first kind to an approach with the integral equation of the second kind makes it possible to apply the simple-iteration method for numerical solving the boundary integral equation. By examples of some model problems, we demonstrate that the iterative approach allows reducing the computational complexity of the problem by tens to hundreds times while providing an acceptable accuracy of the approximate solution.
Keywords: vortex method, incompressible flow, vortex sheet, boundary integral equation, singular integral, simple-iteration method.
Funding agency Grant number
Russian Foundation for Basic Research 18-31-20051
The authors were supported by the Russian Foundation for Basic Research (project no. 18-31-20051).
Received: 09.05.2019
Revised: 21.06.2019
Accepted: 05.09.2019
English version:
Journal of Applied and Industrial Mathematics, 2019, Volume 13, Issue 4, Pages 672–684
DOI: https://doi.org/10.1134/S1990478919040100
Document Type: Article
UDC: 519.64
Language: Russian
Citation: E. A. Mikhailov, I. K. Marchevskii, K. S. Kuzmina, “Iterative approach to solving boundary integral equations in the two-dimensional vortex methods of computational hydrodynamics”, Sib. Zh. Ind. Mat., 22:4 (2019), 54–67; J. Appl. Industr. Math., 13:4 (2019), 672–684
Citation in format AMSBIB
\Bibitem{MikMarKuz19}
\by E.~A.~Mikhailov, I.~K.~Marchevskii, K.~S.~Kuzmina
\paper Iterative approach to solving boundary integral equations
in the two-dimensional vortex methods
of computational hydrodynamics
\jour Sib. Zh. Ind. Mat.
\yr 2019
\vol 22
\issue 4
\pages 54--67
\mathnet{http://mi.mathnet.ru/sjim1065}
\crossref{https://doi.org/10.33048/sibjim.2019.22.406}
\transl
\jour J. Appl. Industr. Math.
\yr 2019
\vol 13
\issue 4
\pages 672--684
\crossref{https://doi.org/10.1134/S1990478919040100}
Linking options:
  • https://www.mathnet.ru/eng/sjim1065
  • https://www.mathnet.ru/eng/sjim/v22/i4/p54
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025