Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2022, Volume 25, Number 2, Pages 127–142
DOI: https://doi.org/10.33048/SIBJIM.2021.25.209
(Mi sjim1176)
 

This article is cited in 13 scientific papers (total in 13 papers)

Integration of the nonlinear Korteweg—de Vries equation with loaded term and source

A. B. Khasanova, T. G. Hasanovb

a Samarkand State University, bulv. University 15, Samarkand 140104, Uzbekistan
b Ургенчский государственный университет, ul. Kh. Alimjan 14, Urgench 220100, Uzbekistan
References:
DOI: https://doi.org/10.33048/SIBJIM.2021.25.209
Abstract: A simple algorithm for deriving an analog of the system of Dubrovin differential equations is proposed. It is shown that the sum of a uniformly convergent functional series constructed by solving the system of Dubrovin equations and the first trace formula really satisfies the loaded nonlinear Korteweg—de Vries equation with a source. In addition, it has been proven that if the initial function is a real $\pi$-periodic analytic function, then the solution of the Cauchy problem is also a real analytic function with respect to the variable $x$; and if the number $\pi/n$ is the period of the initial function, then the number $\pi/n$ is the period for solving the Cauchy problem with respect to the variable $x$. Here $n$ is a natural number, $n\geqslant 2$.
Keywords: Korteweg—de Vries equation, trace formulas, inverse spectral problem, Hill operator, Dubrovin’s system of equations. .
Funding agency Grant number
Ministry of Innovative Development of the Republic of Uzbekistan Ф4-ОТ-04(05)
This work was financially supported by the Ministry of Innovative Development of the Republic of Uzbekistan, project no. F4-OT-04(05).
Received: 24.12.2020
Revised: 04.05.2021
Accepted: 13.01.2022
English version:
Journal of Applied and Industrial Mathematics, 2022, Volume 16, Issue 2, Pages 227–239
DOI: https://doi.org/10.1134/S1990478922020053
Document Type: Article
UDC: 517.956
Language: Russian
Citation: A. B. Khasanov, T. G. Hasanov, “Integration of the nonlinear Korteweg—de Vries equation with loaded term and source”, Sib. Zh. Ind. Mat., 25:2 (2022), 127–142; J. Appl. Industr. Math., 16:2 (2022), 227–239
Citation in format AMSBIB
\Bibitem{KhaHas22}
\by A.~B.~Khasanov, T.~G.~Hasanov
\paper Integration of the nonlinear Korteweg---de Vries equation with loaded term and source
\jour Sib. Zh. Ind. Mat.
\yr 2022
\vol 25
\issue 2
\pages 127--142
\mathnet{http://mi.mathnet.ru/sjim1176}
\transl
\jour J. Appl. Industr. Math.
\yr 2022
\vol 16
\issue 2
\pages 227--239
\crossref{https://doi.org/10.1134/S1990478922020053}
Linking options:
  • https://www.mathnet.ru/eng/sjim1176
  • https://www.mathnet.ru/eng/sjim/v25/i2/p127
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025