Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2023, Volume 26, Number 2, Pages 113–129
DOI: https://doi.org/10.33048/SIBJIM.2023.26.210
(Mi sjim1235)
 

This article is cited in 1 scientific paper (total in 1 paper)

The problem of determining the coefficient for power gradient nonlinearity in semilinear wave equation

V. G. Romanova, T.V. Buguevaba

a Sobolev Institute of Mathematics SB RAS, pr. Acad. Koptyuga 4, Novosibirsk 630090, Russia
b Novosibirsk State University, ul. Pirogova 1, Novosibirsk 630090, Russia
Full-text PDF (568 kB) Citations (1)
References:
DOI: https://doi.org/10.33048/SIBJIM.2023.26.210
Abstract: An one-dimensional inverse problem of determining the coefficient for power gradient nonlinearity in a semilinear wave equation is considered. The existence and uniqueness theorems of the solution of a direct problem are proved. For the inverse problem the local existence theorem is stated and a stability estimate of the solution is found.
Keywords: semilinear wave equation, direct problem, inverse problem, power gradient nonlinearity, existence, stability, uniqueness. .
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0009
This work was carried out within the framework of the state task for Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, project no. FWNF-2022-0009.
Received: 12.12.2022
Revised: 14.12.2022
Accepted: 12.01.2023
English version:
Journal of Applied and Industrial Mathematics, 2023, Volume 17, Issue 2, Pages 370–384
DOI: https://doi.org/10.1134/S1990478923020151
Document Type: Article
UDC: 517.956
Language: Russian
Citation: V. G. Romanov, T.V. Bugueva, “The problem of determining the coefficient for power gradient nonlinearity in semilinear wave equation”, Sib. Zh. Ind. Mat., 26:2 (2023), 113–129; J. Appl. Industr. Math., 17:2 (2023), 370–384
Citation in format AMSBIB
\Bibitem{RomBug23}
\by V.~G.~Romanov, T.V.~Bugueva
\paper The problem of determining the coefficient for power gradient nonlinearity in semilinear wave equation
\jour Sib. Zh. Ind. Mat.
\yr 2023
\vol 26
\issue 2
\pages 113--129
\mathnet{http://mi.mathnet.ru/sjim1235}
\transl
\jour J. Appl. Industr. Math.
\yr 2023
\vol 17
\issue 2
\pages 370--384
\crossref{https://doi.org/10.1134/S1990478923020151}
Linking options:
  • https://www.mathnet.ru/eng/sjim1235
  • https://www.mathnet.ru/eng/sjim/v26/i2/p113
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025