Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2024, Volume 27, Number 4, Pages 130–151
DOI: https://doi.org/10.33048/SIBJIM.2024.27.409
(Mi sjim1307)
 

On existence of viscosity solutions for evolution $p(x)$-Laplace equation with one spatial variable

Ar. S. Tersenov

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
References:
DOI: https://doi.org/10.33048/SIBJIM.2024.27.409
Abstract: In this paper, we study the first boundary value problem for $p(x)$-Laplacian with one spatial variable in the presence of gradient terms that do not satisfy the Bernstein—Nagumo condition. A class of gradient nonlinearities is defined, for which the existence of a viscosity solution that is Lipschitz continuous in $x$ and Hölder continuous in $t$ is proven.
Keywords: $p(x)$-Laplace equation, Bernstein—Nagumo type condition, viscosity solutions, a priori estimates.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0008
The work was carried out within the framework of the state assignment for the Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy orf Sciences, project no. FWNF-2022-0008.
Received: 06.11.2023
Revised: 17.09.2024
Accepted: 06.11.2024
English version:
Journal of Applied and Industrial Mathematics, 2024, Volume 18, Issue 4, Pages 887–905
DOI: https://doi.org/10.1134/S1990478924040215
Document Type: Article
UDC: 517.95
Language: Russian
Citation: Ar. S. Tersenov, “On existence of viscosity solutions for evolution $p(x)$-Laplace equation with one spatial variable”, Sib. Zh. Ind. Mat., 27:4 (2024), 130–151; J. Appl. Industr. Math., 18:4 (2024), 887–905
Citation in format AMSBIB
\Bibitem{Ter24}
\by Ar.~S.~Tersenov
\paper On existence of viscosity solutions for evolution $p(x)$-Laplace equation with one spatial variable
\jour Sib. Zh. Ind. Mat.
\yr 2024
\vol 27
\issue 4
\pages 130--151
\mathnet{http://mi.mathnet.ru/sjim1307}
\transl
\jour J. Appl. Industr. Math.
\yr 2024
\vol 18
\issue 4
\pages 887--905
\crossref{https://doi.org/10.1134/S1990478924040215}
Linking options:
  • https://www.mathnet.ru/eng/sjim1307
  • https://www.mathnet.ru/eng/sjim/v27/i4/p130
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025