Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2013, Volume 16, Number 2, Pages 133–145 (Mi sjvm505)  

Transferring a system with unknown disturbance under optimal control to a state of dynamic balance and to $\epsilon$-vicinity of a final state

V. M. Aleksandrov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: The problem of transferring a linear system to a state of dynamic balance under simultaneous action of an unknown disturbance and time-optimal control is considered. Optimal control is calculated along the phase trajectory, and it is periodically updated for discrete phase coordinate values. It is proved that the phase trajectory comes to the dynamic equilibrium point and makes undamped periodic motions (a stable limit cycle). The location of the dynamic equilibrium point and the limit cycle form are considered as functions of different parameters. With the disturbance calculated in the process of control, the accuracy of transferring to the required final state increases. A method for estimating attainable accuracy is presented. Results of simulation and numerical calculations are given.
Key words: optimal control, speed, computing time, disturbance, phase trajectory, dynamic balance, limit cycle, transferring accuracy, linear system.
Received: 16.01.2012
English version:
Numerical Analysis and Applications, 2013, Volume 6, Issue 2, Pages 119–130
DOI: https://doi.org/10.1134/S1995423913020043
Bibliographic databases:
Document Type: Article
UDC: 519.626.1
Language: Russian
Citation: V. M. Aleksandrov, “Transferring a system with unknown disturbance under optimal control to a state of dynamic balance and to $\epsilon$-vicinity of a final state”, Sib. Zh. Vychisl. Mat., 16:2 (2013), 133–145; Num. Anal. Appl., 6:2 (2013), 119–130
Citation in format AMSBIB
\Bibitem{Ale13}
\by V.~M.~Aleksandrov
\paper Transferring a~system with unknown disturbance under optimal control to a~state of dynamic balance and to $\epsilon$-vicinity of a~final state
\jour Sib. Zh. Vychisl. Mat.
\yr 2013
\vol 16
\issue 2
\pages 133--145
\mathnet{http://mi.mathnet.ru/sjvm505}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3380115}
\elib{https://elibrary.ru/item.asp?id=20442893}
\transl
\jour Num. Anal. Appl.
\yr 2013
\vol 6
\issue 2
\pages 119--130
\crossref{https://doi.org/10.1134/S1995423913020043}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84878866753}
Linking options:
  • https://www.mathnet.ru/eng/sjvm505
  • https://www.mathnet.ru/eng/sjvm/v16/i2/p133
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025