|
|
Sibirskii Zhurnal Vychislitel'noi Matematiki, 2014, Volume 17, Number 2, Pages 111–124
(Mi sjvm536)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On eigenvalues of $(T+H)$-circulants and $(T+H)$-skew-circulants
A. K. Abdikalykovab, Kh. D. Ikramova, V. N. Chugunovc a Lomonosov Moscow State University, Leninskie gory, 1, Moscow, 119991, Russia
b Kazakhstan Branch of Lomonosov Moscow State University, Munaitpasova st., 7, Astana, 010010, Kazakhstan
c Instiute of Numerical Mathematics, Gubkin str., 8, Moscow, 119991, Russia
Abstract:
Explicit formulas for calculating eigenvalues of the Hankel circulants, Hankel skew-circulants, $(T+H)$-circulants, and $(T+H)$-skew-circulants are obtained. It is shown that if $\phi\ne\pm1$, then the set of matrices that can be represented as sums of a Toeplitz $\phi$-circulant and a Hankel $\phi$-circulant is not an algebra.
Key words:
Toeplitz matrix, Hankel matrix, circulant, skew-circulant, eigenvalues.
Received: 25.03.2013
Citation:
A. K. Abdikalykov, Kh. D. Ikramov, V. N. Chugunov, “On eigenvalues of $(T+H)$-circulants and $(T+H)$-skew-circulants”, Sib. Zh. Vychisl. Mat., 17:2 (2014), 111–124; Num. Anal. Appl., 7:2 (2014), 91–103
Linking options:
https://www.mathnet.ru/eng/sjvm536 https://www.mathnet.ru/eng/sjvm/v17/i2/p111
|
|