Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2023, Volume 26, Number 2, Pages 135–147
DOI: https://doi.org/10.15372/SJNM20230202
(Mi sjvm834)
 

This article is cited in 8 scientific papers (total in 8 papers)

Linear quasi-monotonous and hybrid grid-characteristic schemes for the numerical solution of linear acoustic problems

E. K. Guseva, V. I. Golubev, I. B. Petrov

Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
References:
Abstract: The system of linear acoustic equations is hyperbolic. It describes the process of the acoustic wave propagation in deformable media. An important property of the schemes used for the numerical solution is their high approximation order. This property allows one to simulate the perturbation propagation process over sufficiently large distances. Another important property is monotonicity of the schemes used, which prevents the appearance of non-physical solution oscillations. In this paper, we present linear quasi-monotone and hybrid grid-characteristic schemes for a linear transport equation and a one-dimensional acoustic system. They are constructed by a method of analysis in the space of unknown coefficients proposed by A.S. Kholodov and a grid-characteristic monotonicity criterion. Wide spatial stencils with five to seven nodes of the computational grid are considered. Reflection of a longitudinal wave with a sharp front from the interface between media with different parameters is used to compare the numerical solutions.
Key words: grid-characteristic method, monotonicity criterion, hybrid schemes, acoustic waves.
Funding agency Grant number
Russian Science Foundation 21-71-10015
This work was supported by the Russian Science Foundation (project no.В 21-71-10015).
Received: 10.10.2022
Revised: 02.11.2022
Accepted: 30.01.2023
English version:
Numerical Analysis and Applications, 2023, Volume 16, Issue 2, Pages 112–122
DOI: https://doi.org/10.1134/S1995423923020027
Document Type: Article
UDC: 519.63
Language: Russian
Citation: E. K. Guseva, V. I. Golubev, I. B. Petrov, “Linear quasi-monotonous and hybrid grid-characteristic schemes for the numerical solution of linear acoustic problems”, Sib. Zh. Vychisl. Mat., 26:2 (2023), 135–147; Num. Anal. Appl., 16:2 (2023), 112–122
Citation in format AMSBIB
\Bibitem{GusGolPet23}
\by E.~K.~Guseva, V.~I.~Golubev, I.~B.~Petrov
\paper Linear quasi-monotonous and hybrid grid-characteristic schemes for the numerical solution of linear acoustic problems
\jour Sib. Zh. Vychisl. Mat.
\yr 2023
\vol 26
\issue 2
\pages 135--147
\mathnet{http://mi.mathnet.ru/sjvm834}
\crossref{https://doi.org/10.15372/SJNM20230202}
\transl
\jour Num. Anal. Appl.
\yr 2023
\vol 16
\issue 2
\pages 112--122
\crossref{https://doi.org/10.1134/S1995423923020027}
Linking options:
  • https://www.mathnet.ru/eng/sjvm834
  • https://www.mathnet.ru/eng/sjvm/v26/i2/p135
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025