Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2023, Volume 26, Number 2, Pages 149–160
DOI: https://doi.org/10.15372/SJNM20230203
(Mi sjvm835)
 

This article is cited in 1 scientific paper (total in 1 paper)

Convergence analysis of multi-step collocation method to solve generalized auto-convolution Volterra integral equations

P. Darania, S. Pishbin, A. Ebadi

Department of Mathematics, Faculty of Sciences, Urmia University, Urmia, Iran
Full-text PDF (617 kB) Citations (1)
References:
Abstract: In this study, we introduce multi-step collocation methods (MSCM) for solving the Volterra integral equation (VIE) of the auto-convolution type such that without increasing the computational cost, the order of convergence of the proposed one-step collocation methods will be increased. A convergence analysis of the MSCM is investigated using the Peano theorems for interpolation and, finally, two numerical examples are introduced to clarify the significant advantage of the MSCM.
Key words: auto-convolution Volterra integral equation, convergence analysis, multi-step collocation methods.
Received: 20.05.2022
Revised: 21.11.2022
Accepted: 30.01.2023
English version:
Numerical Analysis and Applications, 2023, Volume 16, Issue 2, Pages 123–134
DOI: https://doi.org/10.1134/S1995423923020039
Document Type: Article
MSC: 65R20, 65Q20, 45D05
Language: Russian
Citation: P. Darania, S. Pishbin, A. Ebadi, “Convergence analysis of multi-step collocation method to solve generalized auto-convolution Volterra integral equations”, Sib. Zh. Vychisl. Mat., 26:2 (2023), 149–160; Num. Anal. Appl., 16:2 (2023), 123–134
Citation in format AMSBIB
\Bibitem{DarPisEba23}
\by P.~Darania, S.~Pishbin, A.~Ebadi
\paper Convergence analysis of multi-step collocation method to solve generalized auto-convolution Volterra integral equations
\jour Sib. Zh. Vychisl. Mat.
\yr 2023
\vol 26
\issue 2
\pages 149--160
\mathnet{http://mi.mathnet.ru/sjvm835}
\crossref{https://doi.org/10.15372/SJNM20230203}
\transl
\jour Num. Anal. Appl.
\yr 2023
\vol 16
\issue 2
\pages 123--134
\crossref{https://doi.org/10.1134/S1995423923020039}
Linking options:
  • https://www.mathnet.ru/eng/sjvm835
  • https://www.mathnet.ru/eng/sjvm/v26/i2/p149
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025