Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2023, Volume 26, Number 2, Pages 161–181
DOI: https://doi.org/10.15372/SJNM20230204
(Mi sjvm836)
 

Error estimators and their analysis for CG, Bi-CG and GMRES

P. Jain, K. Manglani, M. Venkatapathi

Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India
References:
Abstract: The demands of accuracy in measurements and engineering models today render the condition number of problems larger. While a corresponding increase in the precision of floating point numbers ensured a stable computing, the uncertainty in convergence when using residue as a stopping criterion has increased. We present an analysis of the uncertainty in convergence when using relative residue as a stopping criterion for iterative solution of linear systems, and the resulting over/under computation for a given tolerance in error. This shows that error estimation is significant for an efficient or accurate solution even when the condition number of the matrix is not large. An $\mathcal{O}(1)$ error estimator for iterations of the CG algorithm was proposed more than two decades ago. Recently, an $\mathcal{O}(k^2)$ error estimator was described for the GMRES algorithm which allows for non-symmetric linear systems as well, where $k$ is the iteration number. We suggest a minor modification in this GMRES error estimation for increased stability. In this work, we also propose an $\mathcal{O}(n)$ error estimator for $A$-norm and $l_2$-norm of the error vector in Bi-CG algorithm. The robust performance of these estimates as a stopping criterion results in increased savings and accuracy in computation, as condition number and size of problems increase.
Key words: error, stopping criteria, condition number, Conjugate Gradients, Bi-CG, GMRES.
Received: 07.02.2022
Revised: 10.09.2022
Accepted: 30.01.2023
English version:
Numerical Analysis and Applications, 2023, Volume 16, Issue 2, Pages 135–153
DOI: https://doi.org/10.1134/S1995423923020040
Document Type: Article
MSC: 65F10, 65G99
Language: Russian
Citation: P. Jain, K. Manglani, M. Venkatapathi, “Error estimators and their analysis for CG, Bi-CG and GMRES”, Sib. Zh. Vychisl. Mat., 26:2 (2023), 161–181; Num. Anal. Appl., 16:2 (2023), 135–153
Citation in format AMSBIB
\Bibitem{JaiManVen23}
\by P.~Jain, K.~Manglani, M.~Venkatapathi
\paper Error estimators and their analysis for CG, Bi-CG and GMRES
\jour Sib. Zh. Vychisl. Mat.
\yr 2023
\vol 26
\issue 2
\pages 161--181
\mathnet{http://mi.mathnet.ru/sjvm836}
\crossref{https://doi.org/10.15372/SJNM20230204}
\transl
\jour Num. Anal. Appl.
\yr 2023
\vol 16
\issue 2
\pages 135--153
\crossref{https://doi.org/10.1134/S1995423923020040}
Linking options:
  • https://www.mathnet.ru/eng/sjvm836
  • https://www.mathnet.ru/eng/sjvm/v26/i2/p161
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025