Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2025, Volume 216, Issue 1, Pages 87–98
DOI: https://doi.org/10.4213/sm10001e
(Mi sm10001)
 

Slim exceptional sets of Waring–Goldbach problem: two squares, two cubes and two biquadrates

Sh. Tian

Department of Mathematics, Tongji University, Shanghai, P. R. China
References:
Abstract: Let $N$ be a sufficiently large number. We show that, with at most $O(N^{3/32+\varepsilon})$ exceptions, all even positive integers not exceeding $N$ can be represented in the form $p_1^2+p_2^2+p_3^3+p_4^3+p_5^4+p_6^4$, where $p_1, p_2, \dots, p_6$ are prime numbers. This is an improvement of the result $O(N^{7/18+\varepsilon})$ due to Zhang and Li.
Bibliography: 13 titles.
Keywords: Waring–Goldbach problem, Hardy–Littlewood method, exceptional set.
Received: 21.09.2023 and 27.02.2024
Published: 21.03.2025
Bibliographic databases:
Document Type: Article
MSC: 11P05, 11P55
Language: English
Original paper language: Russian

§ 1. Introduction

Let $n,k_1,k_2,\dots,k_s$ be natural numbers such that $2\leqslant k_1\leqslant k_2\leqslant \dots \leqslant k_s$, and let $n > s$. The Waring problem of mixed type concerns the representation of the natural number $n$ in the form

$$ \begin{equation*} n=x_1^{k_1}+x_2^{k_2}+\dots +x_s^{k_s}. \end{equation*} \notag $$
Not very much is known on results of this kind. For references on this subject we refer to § P12 of LeVeque [6] and the bibliography of Vaughan [8].

In 1970 Vaughan [7] obtained an asymptotic formula for the number of representations of an integer as a sum of two squares, two cubes and two biquadrates. Let $R(n)$ denote the number of representations of the integer $n$ in the form

$$ \begin{equation*} n=x_1^2+x_2^2+x_3^3+x_4^3+x_5^4+x_6^4, \end{equation*} \notag $$
where $x_i \in \mathbb{N} (1\leqslant i \leqslant 6)$; Vaughan proved that
$$ \begin{equation*} R(n)=\frac{\Gamma^2(3/2)\Gamma^2(4/3)\Gamma^2(5/4)}{\Gamma(13/6)} \mathfrak{S}_{2,3,4}(n)n^{7/6}+O(n^{7/6-1/96+\varepsilon}), \end{equation*} \notag $$
where
$$ \begin{equation*} \mathfrak{S}_{2,3,4}(n)=\sum_{q=1}^{\infty}\frac{1}{q^6} \sum_{\substack{a=1\\(a,q)=1}}^{q}\prod_{i=1}^3 \biggl(\sum_{x_i=1}^{q}e\biggl(\frac{ax_i^{i+1}}{q}\biggr)\biggr)^2 e\biggl(-\frac{an}{q}\biggr). \end{equation*} \notag $$

It is reasonable to conjecture that a sufficiently large even integer $n$ can be expressed as a sum of two squares, two cubes and two biquadrates of prime numbers. That is, for a sufficiently large even integer $n$ the equation

$$ \begin{equation} n=p_1^2+p_2^2+p_3^3+p_4^3+p_5^4+p_6^4 \end{equation} \tag{1.1} $$
is solvable in primes $p_j$ ($1 \leqslant j \leqslant 6$). (Here the letter $p$, with or without subscript, always means a prime number.) This conjecture is perhaps out of reach at present. However, it is possible to obtain a weaker result with $p_j$ replaced by an almost prime. In 2015 Lü [5] proved that for every sufficiently large even integer $n$ the equation
$$ \begin{equation} n=x^2+p_2^2+p_3^3+p_4^3+p_5^4+p_6^4 \end{equation} \tag{1.2} $$
is solvable with $x$ being an almost prime $\mathcal{P}_6$ and $p_j$ ($j=2,3,4,5,6$) being primes, where $\mathcal{P}_j$ denotes an almost prime with at most $j$ prime factors, counted according to multiplicity. In 2018 Liu [4] enhanced this result and showed that (1.2) is solvable with $x$ being an almost prime $\mathcal{P}_4$ and $p_j$ being primes. On the other hand, in 2022 Zhu [13] proved that every sufficiently large even integer $n$ can be represented as two squares of primes, two cubes of primes, two biquadrates of primes and 17 powers of 2, that is,
$$ \begin{equation*} n=p_1^2+p_2^2+p_3^3+p_4^3+p_5^4+p_6^4+2^{v_1}+\dots +2^{v_{17}}. \end{equation*} \notag $$

Let $E(N)$ denote the number of positive even integers $n\in (N/2,N]$ which cannot be represented as (1.1). In 2018 Zhang and Li [10] considered the exceptional set of problem (1.1) and obtained

$$ \begin{equation*} E(N) \ll N^{1-3/16+\varepsilon}, \end{equation*} \notag $$
and in 2021 they [11] improved this result and obtained
$$ \begin{equation*} E(N) \ll N^{7/18+\varepsilon}. \end{equation*} \notag $$

In this paper we continue to sharpen the above result and establish the following result.

Theorem. Let $\mathcal{E}$ denote the set of integers which cannot be represented as a sum of two squares, two cubes and two biquadrates of primes, and for $n \leqslant N$ let ${E(N)=|\mathcal{E}|}$. Then for any $\varepsilon> 0$ we have

$$ \begin{equation*} E(N)\ll N^{3/32+\varepsilon}. \end{equation*} \notag $$

We establish the theorem by applying the Hardy–Littlewood method. Our improvement benefits from the works of Kawada and Wooley [2] and Zhao [12]. Unlike the treatment in [11], we will establish a result on the exceptional set in a related Waring–Goldbach problem with fewer summands. Then, with the help of arguments from [2], we can obtain a better result.

Notation

In this paper $N$ always denotes a sufficiently large even integer. Let $\varepsilon\in(0,10^{-10})$. The constants in $O$-terms and $\ll$-symbols depend at most on $\varepsilon$. As usual, we use $\varphi(n)$ and $d(n)$ to denote the Euler function and divisor function. We use $e(\alpha)$ to denote $e^{2\pi i\alpha}$. For a set $\mathcal{A}$, $|\mathcal{A}|$ denotes its cardinality.

§ 2. Preliminary and outline of method

In order to better explain Lemmas 2.1 and 2.2, we need to introduce some notation. When $\mathcal{C} \subseteq \mathbb{N}$, we write $\overline{\mathcal{C}}$ for the complement $\mathbb{N}\setminus \mathcal{C}$ of $\mathcal{C}$ within $\mathbb{N}$. When $a$ and $b$ are nonnegative integers, it is convenient to denote by $(\mathcal{C})_a^b$ the set $\mathcal{C}\cap(a,b]$ and by $|\mathcal{C}|_a^b$ the cardinality of $\mathcal{C}\cap(a,b]$. Next, for $\mathcal{C}, \mathcal{D} \subseteq \mathbb{N}$ we define

$$ \begin{equation*} \mathcal{C}\pm\mathcal{D}=\{c \pm d\colon c \in \mathcal{C}\text{ and } d \in \mathcal{D} \}. \end{equation*} \notag $$

When $k\in \mathbb{N}$, a subset $\mathcal{Q}$ of $\mathbb{N}$ is a high-density subset of the $k$th powers if (i) $\mathcal{Q} \subseteq \{n^k,\, n \in \mathbb{N}\}$ and (ii) $|\mathcal{Q}|_0^N > N^{1/k-\varepsilon}$.

For $\theta > 0$ a set $\mathcal{R}\subseteq \mathbb{N}$ is said to have complementary density growth exponent smaller than $\theta$ if there exists a positive number $\delta$ such that $|\overline{\mathcal{R}}|< N^{\theta-\delta}$.

For $q \in \mathbb{N}$ and $a \in \{0,1,\dots,q-1\}$, let $\mathcal{P}_a=\mathcal{P}_{a,q}$ denote

$$ \begin{equation*} \mathcal{P}_{a,q}=\{a+mq \colon m \in \mathbb{Z} \}. \end{equation*} \notag $$

We say that a set $\mathcal{L}$ is a union of arithmetic progressions modulo $q$ if

$$ \begin{equation*} \mathcal{L}=\bigcup_{\mathbf{l}\in\mathfrak{L}}P_{\mathbf{l},q} \end{equation*} \notag $$
for some subset $\mathfrak{L}$ of $\{ 0,1,\dots,q-1 \}$. And it is convenient to write
$$ \begin{equation*} \langle\mathcal{C}\wedge\mathcal{L}\rangle_a^b =\min_{\mathbf l\in\mathfrak{L}}|\mathcal{C}\cap\mathcal{P}_{\mathbf{l},q}|_a^b, \end{equation*} \notag $$
where $\mathcal{C} \subseteq \mathbb{N}$ and $a,b \in \mathbb{Z}$.

When $k \in \mathbb{N}$ and $\mathcal{L}$ is a union of arithmetic progressions modulo $q$, a subset $\mathcal{Q}$ of $\mathcal{N}$ is a high-density subset of the $k$th powers relative to $\mathcal{L}$ if (i) $\mathcal{Q} \subseteq \{n^k, n\in \mathbb{N}\}$ and (ii) $\langle\mathcal{Q}\wedge \mathcal{L}\rangle_0^N \gg_q N^{1/k-\varepsilon}$.

For $\theta > 0$, a set $\mathcal{R} \subseteq \mathbb{N}$ is said to have $\mathcal{L}$-complementary density growth exponent smaller than $\theta$ if $|\overline{\mathcal{R}} \cap \mathcal{L}|_0^N < N^{\theta-\delta}$.

Lemma 2.1. Let $\mathcal{L}$, $\mathcal{M}$ and $\mathcal{N}$ be unions of arithmetic progressions modulo $q$, for some natural number $q$, and suppose that $\mathcal{N} \subseteq \mathcal{L}+\mathcal{M}$. Suppose also that $\mathcal{S}$ is a high-density subset of the squares relative to $\mathcal{L}$, and that $\mathcal{A} \subseteq \mathbb{N}$ has $\mathcal{M}$-complementary density growth exponent smaller than $1$. Then, whenever $\varepsilon >0$ and $N$ is a natural number sufficiently large in terms of $\varepsilon$, we have

$$ \begin{equation*} |\overline{\mathcal{A}+\mathcal{S}}\cap \mathcal{N}|_{2N}^{3N} \ll_q N^{\varepsilon-1/2}|\overline{\mathcal{A}}\cap\mathcal{M}|_N^{3N}. \end{equation*} \notag $$

Lemma 2.2. Let $\mathcal{C}$ be a high-density subset of the cubes, and suppose that ${\mathcal{A} \subseteq \mathbb{N}}$ has complementary density growth exponent smaller than $\theta$ for some positive number $\theta$. Then, whenever $\varepsilon > 0$ and $N$ is a natural number sufficiently large in terms of $\varepsilon$, we have

$$ \begin{equation*} |\overline{\mathcal{A}+\mathcal{C}}|_{2N}^{3N} \ll N^{\varepsilon-1/3}|\overline{\mathcal{A}}|_{2N}^{3N}+N^{\varepsilon-1}(|\overline{A}|_{2N}^{3N})^2. \end{equation*} \notag $$

The proof follows from Theorems 1.2, 2.2 and 4.1, (a), in [2].

In order to prove the theorem, we apply first the Hardy–Littlewood method to study the problem

$$ \begin{equation*} N=p_1^2+p_2^3+p_3^4+p_4^4, \end{equation*} \notag $$
where $N$ is a sufficiently large positive integer.

For this purpose we set $A$ to be a large absolute constant which is sufficiently large in terms of the constants $c$ and $c^*$ in Lemmas 3.3 and 3.4,

$$ \begin{equation*} Q_0=\log^{A} N, \qquad Q_1=N^{1/6} \quad\text{and}\quad Q_2=N^{5/6}, \end{equation*} \notag $$
and for $(a,q)=1$, $0<a<q$, we put
$$ \begin{equation*} \begin{gathered} \, \mathfrak M_0(q,a)=\biggl(\frac{a}{q}-\frac{Q_0}{N},\frac{a}{q}+\frac{Q_0}{N}\biggr], \qquad \mathfrak M(q,a)=\biggl(\frac{a}{q}-\frac{1}{qQ_2},\frac{a}{q}+\frac{1}{qQ_2}\biggr], \\ \mathfrak M_0=\bigcup_{q\leqslant Q_0} \bigcup_{\substack{a=1\\(a,q)=1}}^{q}{\mathfrak M_0(q,a)}, \qquad \mathfrak M=\bigcup_{q\leqslant Q_1} \bigcup_{\substack{a=1\\(a,q)=1}}^{q}{\mathfrak M(q,a)}, \\ \mathfrak J=\biggl(-\frac{1}{Q_2},1-\frac{1}{Q_2}\biggr], \qquad \mathfrak m_1=\mathfrak J\setminus \mathfrak M, \quad \mathfrak m_2=\mathfrak M\setminus \mathfrak M_0, \quad \mathfrak m=\mathfrak m_1\cup \mathfrak m_2. \end{gathered} \end{equation*} \notag $$
Then we have the Farey dissection
$$ \begin{equation} \mathfrak J=\mathfrak M_0\cup \mathfrak m. \end{equation} \tag{2.1} $$
Let
$$ \begin{equation*} P_k=\biggl[\frac{N^{1/k}}{2}\biggr]\quad\text{and} \quad f_k(\alpha)=\sum_{P_k<p\leqslant 2P_k}e(p^k\alpha)\log p, \end{equation*} \notag $$
where $[N]$ is the least integer not smaller than $N$, and
$$ \begin{equation*} \begin{aligned} \, \mathcal R(n) &=\int_{-1/Q_2}^{1-1/Q_2}{f_2(\alpha)f_3(\alpha)f_4^2(\alpha)e(-\alpha n)}\,d\alpha \\ &=\biggl\{\int_{\mathfrak{M}_0}+\int_{\mathfrak{m}} \biggr\} f_2(\alpha)f_3(\alpha)f_4^2(\alpha)e(-\alpha n)\,d\alpha. \end{aligned} \end{equation*} \notag $$

We set

$$ \begin{equation*} S_k(q,a)=\sum_{\substack{r=1\\(a,q)=1}}^q e\biggl(\frac{ar^k}{q}\biggr) \end{equation*} \notag $$
for $k=2,3,4$. Let
$$ \begin{equation*} A(n,q)=\frac{1}{\varphi^4(q)}S_2(q,a)S_3(q,a)S_4^2(q,a)e\biggl(-\frac{an}{q}\biggr) \quad\text{and}\quad \mathfrak S(n)=\sum_{q=1}^{\infty}A(q,n). \end{equation*} \notag $$

Proposition 2.1. For $n \in [N/2,N]$ we have

$$ \begin{equation*} \begin{aligned} \, &\int_{\mathfrak{M}_0} f_2(\alpha)f_3(\alpha)f_4^2(\alpha)e(-n\alpha)\, d\alpha \\ &\qquad = \frac{\Gamma(3/2)\Gamma(4/3)\Gamma^2(5/4)}{\Gamma(4/3)}\mathfrak S(n) \frac{n^{1/3}}{\log^4 n}+O\biggl(\frac{n^{1/3}\log {\log n}}{\log^5 n}\biggr), \end{aligned} \end{equation*} \notag $$
where $n$ is an integer and $\mathfrak S(n)$ is a singular series, which is absolutely convergent and satisfies
$$ \begin{equation*} (\log\log n)^{-c} \ll \mathfrak{S}(n) \ll d(n); \end{equation*} \notag $$
here $c$ is an absolutely positive constant.

The proof of Proposition 2.1 is a standard application. Thus we omit it.

We set

$$ \begin{equation*} \begin{gathered} \, \mathcal{E}^*=\{n\in \mathbb{N}\colon n\equiv2,4 \ (\operatorname{mod} 6), \ n\neq p_1^2+p_2^3+p_3^4+p_4^4 \}, \\ \mathcal{E}^{**}=\{n\in \mathbb{N}\colon n\equiv3,5,9,11,15,17,21,23 \ (\operatorname{mod}24), \ n\neq p_1^2+p_2^2+p_3^3+p_4^4+p_5^4 \}, \\ E^*(N)=|\mathcal{E}^*|_0^N \quad\text{and}\quad E^{**}(N)=|\mathcal{E}^{**}|_0^N. \end{gathered} \end{equation*} \notag $$

Proposition 2.2. We have

$$ \begin{equation*} E^*(N)\ll N^{{89}/{96}+\varepsilon}. \end{equation*} \notag $$

We prove this proposition in § 4.

Proof of the theorem. Let the integers $N_j$ for $j>0$ be determined by the following recurrence formula:
$$ \begin{equation*} N_0=\biggl[\frac{N}{2}\biggr]\quad\text{and} \quad N_{j+1}=\biggl[\frac{2N_j}{3}\biggr], \quad j\geqslant 0. \end{equation*} \notag $$
Meanwhile, let $J$ be the least positive integer satisfying $N_{\mkern-1mu J}\!=\!2$, so that ${J\!=\!O(\log N)}$. We put
$$ \begin{equation*} \begin{gathered} \, \mathcal{A}_1=\{p_1^2+p_2^3+p_3^4+p_4^4\}, \qquad \mathcal{S}=\{p^2\}, \qquad \mathcal{L}=\{n\in \mathbb{N} \colon n \equiv 1 \ (\operatorname{mod} 24)\}, \\ \mathcal{M} = \{n\in \mathbb{N}\colon n \equiv 0\ (\operatorname{mod}2) \} \quad\text{and}\quad \mathcal{N}=\{n\in \mathbb{N}\colon n\equiv 1\ (\operatorname{mod}2)\}. \end{gathered} \end{equation*} \notag $$
Then we see that $\mathcal{N} \subseteq \mathcal{L}+\mathcal{M}$ and deduce from the prime number theorem in arithmetic progressions that
$$ \begin{equation*} \langle\mathcal{S}\wedge\mathcal{L}\rangle_0^N \gg N^{1/2-\varepsilon}. \end{equation*} \notag $$
From Proposition 2.2 we obtain
$$ \begin{equation*} |\overline{\mathcal{A}_1}\cap\mathcal{M}|_0^N=E^*(N)\ll N^{89/96+\varepsilon}. \end{equation*} \notag $$
Using Lemma 2.2 we have
$$ \begin{equation*} |\mathcal{E}^{**}|_{2N}^{3N} \ll N^{\varepsilon-1/2}|\mathcal{E}^*|_N^{3N} \ll N^{\varepsilon-1/2}E^*(3N) \ll N^{89/96-1/2+\varepsilon}. \end{equation*} \notag $$
Hence
$$ \begin{equation*} E^{**}(N) \leqslant 3+\sum_{j=1}^J |\mathcal{E}^{**}|_{2N_j}^{3N_j} \ll N^{89/96-1/2+\varepsilon}. \end{equation*} \notag $$
Similarly, set
$$ \begin{equation*} \mathcal{A}_2=\{p_1^2+p_2^2+p_3^3+p_4^4+p_5^4\}, \qquad \mathcal{C}=\{p^3\}. \end{equation*} \notag $$
Then we deduce from the prime number theorem that
$$ \begin{equation*} |\mathcal{C}|_0^N \gg N^{1/3-\varepsilon}. \end{equation*} \notag $$
From Lemma 2.2 we obtain
$$ \begin{equation*} \begin{aligned} \, |\mathcal{E}|_{2N}^{3N} &\ll N^{\varepsilon-1/3}|\mathcal{E}^{**}|_{2N}^{3N} +N^{\varepsilon-1}(|\mathcal{E}^{**}|_N^{3N})^2 \\ &\ll N^{\varepsilon-1/3}E^{**}(3N)+N^{\varepsilon-1}(E^{**}(3N))^2 \ll N^{{41}/{96}-1/3+\varepsilon}. \end{aligned} \end{equation*} \notag $$
Therefore, we have
$$ \begin{equation*} E(N) \ll 3+\sum_{j=1}^J |\mathcal{E}|_{2N_j}^{3N_j} \ll N^{3/32+\varepsilon}, \end{equation*} \notag $$
which implies the theorem.

§ 3. Some lemmas

Lemma 3.1. Let $2 \leqslant k_1 \leqslant k_2 \leqslant \dots \leqslant k_s$ be natural numbers such that

$$ \begin{equation*} \sum^{s}_{i=j+1}{\frac{1}{k_i}}\leqslant \frac{1}{k_j}, \qquad 1\leqslant j \leqslant s-1. \end{equation*} \notag $$
Then
$$ \begin{equation*} \int^1_0\biggl|\prod^s_{i=1}f_{k_i}(\alpha)\biggr|^{2}\, d\alpha \ll N^{1/k_1+\dots +1/k_s+\varepsilon}. \end{equation*} \notag $$

Proof. This follows from Lemma 1 in [1].

Lemma 3.2. Let $Z(N)$ denote the subset of integers in the interval $[\frac12N, N]$, and let $Z= |Z(N)|$. Let $\xi\colon \mathbb{Z} \to \mathbb{C} $ be a function satisfying $|\xi(n)| \leqslant 1$, and set

$$ \begin{equation*} K(\alpha)=\sum_{n\in Z(N)} \xi(n)e(-n\alpha). \end{equation*} \notag $$
Then we have
$$ \begin{equation*} \int_0^1 {|f_2(\alpha)K(\alpha)|}^2 \,d\alpha \ll Z^2N^{\varepsilon}+ZN^{1/2}. \end{equation*} \notag $$

For a proof see (2.4) in [9].

Lemma 3.3. Let

$$ \begin{equation*} f_k(\alpha,X)=\sum_{X\leqslant p \leqslant 2X}e(\alpha p^k). \end{equation*} \notag $$
Then for $\alpha=a/q+\lambda$, $(a,q)=1$, $q\leqslant Q \leqslant X$ and $|\lambda| \leqslant Q/(qN)$ we have
$$ \begin{equation*} f_k(\alpha,X)\ll Q^{1/2}X^{{11}/{20}+\varepsilon}+V_k(\alpha,X), \end{equation*} \notag $$
where
$$ \begin{equation} V_k(\alpha,X)=\frac{X(\log N)^{c^*}}{q^{1/2-\varepsilon}(1+X^k|\lambda|)^{1/2}} \end{equation} \tag{3.1} $$
and $c^* >0$ is an absolute constant.

Proof. See Theorem in [3].

Lemma 3.4. Define the multiplicative function $\omega_k(q)$ by setting

$$ \begin{equation*} \omega_k(p^{uk+v})= \begin{cases} kp^{-u-1/2}, &u\leqslant 0, \ v=1, \\ p^{-u-1}, &u\leqslant 0, \ 2\leqslant v \leqslant k. \end{cases} \end{equation*} \notag $$
For $\gamma \in \mathbb{R}$ set
$$ \begin{equation*} \mathcal L(\gamma)=\sum_{q\leqslant P_4}\sum_{\substack{a=1\\(a,q)=1}}^q\int_{|\alpha-a/q|\leqslant P_3}{\frac{\omega_3^2(q)d^c(q) {|\sum_{P_4\leqslant p\leqslant 2P_4}e((\alpha+\gamma) p^4)|}^2}{1+P_3^3| \alpha-a/q|}}\,d\alpha. \end{equation*} \notag $$
Then
$$ \begin{equation*} \mathcal L(\gamma)\ll P_4^{2}N^{-1}(\log N)^{c}, \end{equation*} \notag $$
where $c$ is a constant.

Proof. This goes by taking $k=3$, $P=P_3$ and $Q=P_4$ in Lemma 2.2 in [12].

Lemma 3.5. For $\alpha \in \mathfrak m_1$ we have

$$ \begin{equation} |f_2(\alpha)| \ll N^{1/2-1/16+\varepsilon}\quad\textit{and} \quad |f_4(\alpha)| \ll N^{1/4-1/{96}+\varepsilon}. \end{equation} \tag{3.2} $$

The proof can be found in Theorem 3 in [3] and Lemma 2.4 in [12] for $q > N^{1/6}$ or $|\alpha- a/q| > {1}/(qN^{5/6})$.

Lemma 3.6. Let $\mathcal{M}$ be the union of the intervals $\mathcal{M}(q,a,P_3)$ for $1\leqslant a \leqslant q \leqslant P_3^{3/4}$ and $(a,q)=1$, where $\mathcal{M}(q,a,P_3)=\{ \alpha \colon | q\alpha-a| \leqslant P_3^{-9/4} \}$. Suppose that $G(\alpha)$ and $h(\alpha)$ are integrable functions of period $1$. Then we have

$$ \begin{equation*} \int_{\mathfrak m}{|f_3(\alpha,P_3)h(\alpha)G(\alpha)|}\,d\alpha \ll P_3\mathcal{J}_0^{1/4}\biggl(\int_{\mathfrak m}{|G(\alpha)|}^2 \, d\alpha\biggr)^{1/4}{\mathcal{J}^{1/2}}+P_3^{7/8+\varepsilon}\mathcal{J}, \end{equation*} \notag $$
where
$$ \begin{equation*} \mathcal{J}=\int_{\mathfrak m}{|h(\alpha)G(\alpha)|} \,d\alpha \end{equation*} \notag $$
and
$$ \begin{equation*} \mathcal{J}_0=\sup_{\beta \in [0,1)} \int_{\mathcal M}{\frac{\omega_3^2(q){|h(\alpha+\beta)|}^2}{(1+P_3^3(\alpha-a/q))^2}}\,d\alpha. \end{equation*} \notag $$

Proof.This follows from Lemma 3.1 in [12] for $k=3$.

§ 4. Mean value estimates

Let

$$ \begin{equation*} I_j=\int_{\mathfrak m_j}{|f_2(\alpha)f_3(\alpha)f_4^2(\alpha)K(\alpha)|}\,d\alpha, \qquad j=1,2, \end{equation*} \notag $$
where $K(\alpha)$ is defined as in Lemma 3.2.

Proposition 4.1. We have

$$ \begin{equation*} I_1 \ll Z^{1/2}N^{153/192+\varepsilon}, \end{equation*} \notag $$
where $Z$ is defined as in Lemma 3.2.

Proof. By Cauchy’s inequality we have
$$ \begin{equation*} \begin{aligned} \, I_1 &\ll \biggl(\int_{\mathfrak m_1}|f_2^2(\alpha)f_3^2(\alpha)f_4^4(\alpha)|\, d\alpha \biggr)^{1/2}\biggl(\int_{\mathfrak{m_1}}|K(\alpha)|^2\, d\alpha \biggr)^{1/2} \\ &\ll \biggl(\int_{\mathfrak m_1}|f_2^2(\alpha)f_3^2(\alpha)f_4^4(\alpha)|\, d\alpha \biggr)^{1/2}Z^{1/2}. \end{aligned} \end{equation*} \notag $$
Let
$$ \begin{equation*} \mathcal{I}(t)= \int_{\mathfrak m_1}|f_2^2(\alpha)f_3^t(\alpha)f_4^4(\alpha)|\, d\alpha, \qquad 1 \leqslant t \leqslant 2. \end{equation*} \notag $$
Applying Lemma 3.6 to $h(\alpha)=f_4(\alpha)$ and $G(\alpha)=f_2^2(\alpha)f_3(\alpha)f_4^3(\alpha)$ we obtain
$$ \begin{equation} \begin{aligned} \, \mathcal{I}(2) &= \int_{\mathfrak m_1}{|f_3(\alpha)h(\alpha)G(\alpha)|} \,d\alpha \nonumber \\ &\ll P_3\mathcal{J}_0^{1/4}\biggl(\int_{\mathfrak m_1}{|G(\alpha)|}^2 \,d\alpha\biggr)^{1/4}{\mathcal{I}(1)^{1/2}}+P_3^{7/8+\varepsilon}\mathcal{I}(1). \end{aligned} \end{equation} \tag{4.1} $$
From Cauchy’s inequality and Lemma 3.1 we get that
$$ \begin{equation} \mathcal{I}(1) \ll \biggl(\int_0^1 |f_2^2(\alpha)f_4^4(\alpha)|\, d\alpha\biggr)^{1/2}\mathcal{I}(2)^{1/2} \ll N^{1/2+\varepsilon}\mathcal{I}(2)^{1/2}. \end{equation} \tag{4.2} $$
We deduce from Lemma 3.4 that
$$ \begin{equation} \begin{aligned} \, \mathcal{J}_0 &\ll \sup_{\beta \in [0,1)}\sum_{q\leqslant Q} \sum_{\substack{a=1\\(a,q)=1}}^q \int_{|\alpha-a/q| \leqslant N}{\frac{\omega_3^2(q){| f_4(\alpha+\beta)|}^2}{(1+P_3^3(\alpha-a/q))^2}}\,d\alpha \nonumber \\ &\ll \sup_{\beta \in [0,1)} \mathcal L(\beta) \ll N^{-1/2+\varepsilon}. \end{aligned} \end{equation} \tag{4.3} $$
Using Lemma 3.5 we obtain
$$ \begin{equation} \begin{aligned} \, \int_{\mathfrak m_1}{|G(\alpha)|}^2\, d\alpha &\ll \max_{\alpha \in \mathfrak m_1}{|f_2(\alpha)|}^2{|f_4(\alpha)|}^2 \int_{\mathfrak{m}_1}{| f_2^2(\alpha)f_3^2(\alpha)f_4^4(\alpha)|} \,d\alpha \nonumber \\ &\ll N^{7/8+23/48+\varepsilon}I(2) \ll N^{65/48+\varepsilon}I(2). \end{aligned} \end{equation} \tag{4.4} $$
By combining (4.1)(4.4) we obtain
$$ \begin{equation} \begin{aligned} \, \mathcal{I}(2) &\ll P_3N^{-1/8+\varepsilon}N^{65/192+\varepsilon}I(2)^{1/4}N^{1/4+\varepsilon} \mathcal{I}(2)^{1/4}+P_3^{7/8+\varepsilon}N^{1/2+\varepsilon}\mathcal{I}(2)^{1/2} \nonumber \\ &\ll N^{{153}/{192}+\varepsilon}\mathcal{I}(2)^{1/2} +N^{{19}/{24}+\varepsilon} \mathcal{I}(2)^{1/2}, \nonumber \\ \mathcal{I}(2)^{1/2} &\ll N^{{153}/{192}+\varepsilon}. \end{aligned} \end{equation} \tag{4.5} $$
Therefore,
$$ \begin{equation*} I_1 \ll \biggl(\int_{\mathfrak m_1}|f_2^2(\alpha)f_3^2(\alpha)f_4^4(\alpha)| \,d\alpha \biggr)^{1/2}Z^{1/2} \ll \mathcal{I}(2)^{1/2}Z^{1/2} \ll N^{{153}/{192}+\varepsilon}Z^{1/2}. \end{equation*} \notag $$
This completes Proposition 4.1.

Proposition 4.2. We have

$$ \begin{equation*} I_2 \ll ZN^{1/3}Q_0^{-1/3}+Z^{1/2}N^{23/30+\varepsilon}. \end{equation*} \notag $$

Proof. For $\alpha \in \mathfrak m_2$, by Lemma 3.3 and $Q=N^{1/6}$ we have
$$ \begin{equation} |f_2(\alpha)| \ll N^{1/12}P_2^{11/20+\varepsilon}+\frac{P_2(\log N)^{c^*}}{q^{1/2-\varepsilon}(1+X^2|\lambda|)^{1/2}} \nonumber \end{equation} \notag $$
$$ \begin{equation} \ll N^{43/120+\varepsilon}+\frac{N^{1/2}(\log N)^{c^*}}{q^{1/2-\varepsilon}(1+N|\lambda|)^{1/2}}, \end{equation} \tag{4.6} $$
$$ \begin{equation} |f_3(\alpha)| \ll N^{1/12}P_3^{11/20+\varepsilon}+\frac{P_3(\log N)^{c^*}}{q^{1/2-\varepsilon}(1+X^3|\lambda|)^{1/2}} \nonumber \end{equation} \notag $$
$$ \begin{equation} \ll N^{4/15+\varepsilon}+\frac{N^{1/3}(\log N)^{c^*}}{q^{1/2-\varepsilon}(1+N|\lambda|)^{1/2}} \end{equation} \tag{4.7} $$
and
$$ \begin{equation} \begin{aligned} \, |f_4(\alpha)| &\ll N^{1/12}P_4^{11/20+\varepsilon}+\frac{P_4(\log N)^{c^*}}{q^{1/2-\varepsilon}(1+X^4|\lambda|)^{1/2}} \nonumber \\ &\ll N^{53/240+\varepsilon}+\frac{N^{1/4}(\log N)^{c^*}}{q^{1/2-\varepsilon}(1+N|\lambda|)^{1/2}}, \end{aligned} \end{equation} \tag{4.8} $$
where $c^*$ is a positive constant. We set
$$ \begin{equation*} V_k(\alpha)=\frac{N^{1/k}(\log N)^{c^*}}{q^{1/2-\varepsilon}(1+N|\lambda|)^{1/2}}. \end{equation*} \notag $$

Then we obtain

$$ \begin{equation*} \begin{aligned} \, I_2 &\ll N^{4/15+\varepsilon}\int_{\mathfrak m_2}{|f_2(\alpha)f_4^2(\alpha)K(\alpha)|}\,d\alpha + \int_{\mathfrak m_2}{|V_3(\alpha)f_2(\alpha)f_4^2(\alpha)K(\alpha)| }\,d\alpha \\ &\ll N^{4/15+\varepsilon}\int_{\mathfrak m_2}{|f_2(\alpha)f_4^2(\alpha)K(\alpha)|}\,d\alpha + N^{43/120+\varepsilon}\int_{\mathfrak m_2}{| V_3(\alpha)f_4^2(\alpha)K(\alpha)| }\,d\alpha \\ &\qquad+ \int_{\mathfrak m_2}{|V_2(\alpha)V_3(\alpha)f_4^2(\alpha)K(\alpha)| }\,d\alpha \\ &\ll N^{4/15+\varepsilon}\int_{\mathfrak m_2}{|f_2(\alpha)f_4^2(\alpha)K(\alpha)|}\,d\alpha + N^{43/120+\varepsilon}\int_{\mathfrak m_2}{| V_3(\alpha)f_4^2(\alpha)K(\alpha)| }\,d\alpha \\ &\qquad + N^{{53}/{120}+\varepsilon}\int_{\mathfrak m_2}{|V_2(\alpha)V_3(\alpha)K(\alpha)| }\,d\alpha +\int_{\mathfrak m_2}{|V_2(\alpha)V_3(\alpha)V_4^2(\alpha)K(\alpha)| }\,d\alpha \\ &\ll I_{21}+I_{22}+I_{23}+I_{24}. \end{aligned} \end{equation*} \notag $$
By Cauchy’s inequality and Lemma 3.1 we have
$$ \begin{equation} \begin{aligned} \, I_{21} &\ll N^{4/15+\varepsilon} \biggl(\int_0^1{|K(\alpha)|}^2 \,d\alpha\biggr)^{1/2} \biggl(\int_0^1{|f_2(\alpha)f_4^2(\alpha)|}^2\,d\alpha\biggr)^{1/2} \nonumber \\ &\ll N^{4/15+\varepsilon}Z^{1/2}N^{1/2+\varepsilon} \ll Z^{1/2}N^{23/30+\varepsilon}. \end{aligned} \end{equation} \tag{4.9} $$
By Lemma 3.4 and ${1}/{q}\leqslant \omega_4^2(q)$,
$$ \begin{equation} \begin{aligned} \, &\int_{\mathfrak m_2}{|V_3^2(\alpha)f_4^2(\alpha)|} \,d\alpha \nonumber \\ &\quad \ll N^{2/3+\varepsilon}\sum_{q\leqslant N^{1/6}}\sum_{\substack{a=1\\(a,q)=1}}^q \int_{|\alpha-a/q|\leqslant {1}/(qN^{5/6})}{\frac{(\log N)^{2c^*} {|\sum_{p\leqslant N^{1/4}}e(\alpha p^4)|}^2}{q(1+N|\alpha-a/q|)}}\,d\alpha \nonumber \\ &\quad\ll N^{2/3+\varepsilon}{(\log N)}^{2c^*}\sum_{q\leqslant N^{1/6}}\sum_{\substack{a=1\\(a,q)=1}}^q \int_{|\alpha-a/q|\leqslant 1/(qN^{5/6})}\!{\frac{\omega_4^2(q) {|\sum_{p\leqslant N^{1/4}}e(\alpha p^4)|}^2}{1+N|\alpha-a/q|}}\,d\alpha \nonumber \\ &\quad \ll N^{2/3+\varepsilon}{(\log N)}^{2c^*} \mathcal L(0) \ll N^{1/6+\varepsilon} \end{aligned} \end{equation} \tag{4.10} $$
and
$$ \begin{equation} \begin{aligned} \, &\int_{\mathfrak m_2}{|V_2(\alpha)V_3(\alpha)| }\,d\alpha \nonumber \\ &\quad\ll N^{5/6}(\log N)^{2c^*} \sum_{q\leqslant N^{1/6}}\sum_{\substack{a=1\\(a,q)=1}}^q\int_{|\alpha-{a}/{q}|\leqslant 1/(qN^{5/6})}{\frac{1}{q^{1-2\varepsilon}(1+N|\alpha-a/q|)}}\,d\alpha \nonumber \\ &\quad \ll N^{5/6}(\log N)^{2c^*}N^{-1+\varepsilon} \ll N^{-1/6+\varepsilon}. \end{aligned} \end{equation} \tag{4.11} $$
Applying (4.9) and the trivial bound $|f_4(\alpha)| \leqslant N^{1/4}$, we have
$$ \begin{equation} \begin{aligned} \, I_{22} &\ll N^{43/120+1/4+\varepsilon}\biggl(\int_{\mathfrak m_2}{| V_3^2(\alpha)f_4^2(\alpha)| }\,d\alpha\biggr)^{1/2}\biggl(\int_0^1 |K(\alpha)|^2 \,d\alpha \biggr)^{1/2} \nonumber \\ &\ll Z^{1/2}N^{83/120+\varepsilon} \end{aligned} \end{equation} \tag{4.12} $$
and
$$ \begin{equation} \begin{aligned} \, I_{23} &\ll N^{53/120+\varepsilon}Z\biggl(\int_{\mathfrak m_2}{|V_3(\alpha)V_2(\alpha)| }\,d\alpha\biggr) \ll ZN^{11/40+\varepsilon}. \end{aligned} \end{equation} \tag{4.13} $$
Similarly to (4.11) we have
$$ \begin{equation} \begin{aligned} \, &\int_{\mathfrak m_2}{|V_3(\alpha)V^2_4(\alpha)| }\,d\alpha \nonumber \\ &\quad \ll N^{5/6}(\log N)^{3c^*} \!\sum_{q\leqslant N^{1/6}}\sum_{\substack{a=1\\(a,q)=1}}^q\int_{|\alpha-{a}/{q}|\leqslant 1/(qN^{5/6})}{\frac{1}{q^{3/2-3\varepsilon}(1\,{+}\,N|\alpha\,{-}\,a/q|)^{3/2}}}\,d\alpha \nonumber \\ &\quad\ll N^{5/6}(\log N)^{3c^*}N^{-1} \ll N^{-1/6}(\log N)^{3c^*}. \end{aligned} \end{equation} \tag{4.14} $$
Note that for $\alpha \in \mathfrak m_2$ we have $q\gg Q_0$ or $|\alpha-a/q| \gg {Q_0}/{N}$. Thus,
$$ \begin{equation} \sup_{\alpha \in \mathfrak m_2}|V_2(\alpha)| \ll N^{1/2}Q_0^{-1/2}(\log N)^{c^*}. \end{equation} \tag{4.15} $$
Then we can conclude from (4.13) and (4.14) that
$$ \begin{equation} \begin{aligned} \, I_{24} &\ll Z\sup_{\alpha \in \mathfrak m_2}{|V_2(\alpha)|}\int_{\mathfrak m_2}{|V_3(\alpha)V^2_4(\alpha)| }\,d\alpha \nonumber \\ &\ll ZN^{1/2}Q_0^{-1/2}N^{-1/6}(\log N)^{4c^*} \ll ZN^{1/3}Q_0^{-1/3}. \end{aligned} \end{equation} \tag{4.16} $$
A combination of (4.9), (4.12), (4.13) and (4.16) shows that
$$ \begin{equation*} I_2 \ll ZN^{1/3}Q_0^{-1/3}+Z^{1/2}N^{23/30+\varepsilon}. \end{equation*} \notag $$
This completes the proof of Proposition 4.2.

Proof of Proposition 2.2. Let $\mathcal F(N)$ denote the set of integers $N/2 \leqslant n \leqslant N$ such that
$$ \begin{equation} \mathcal R(n)=\int_{\mathfrak M_0}{f_2(\alpha)f_3(\alpha)f_4^2(\alpha)e(-\alpha n)}\,d\alpha + \int_{\mathfrak m}{f_2(\alpha)f_3(\alpha)f_4^2(\alpha)e(-\alpha n)}\,d\alpha. \end{equation} \tag{4.17} $$
By Proposition 2.1, for $n \in \mathcal F(N)$ we obtain
$$ \begin{equation} \biggl| \int_{\mathfrak m}{f_2(\alpha)f_3(\alpha)f_4^2(\alpha)e(-\alpha n)}\,d\alpha \biggr| \gg \frac{n^{1/3}}{\log^4 n}. \end{equation} \tag{4.18} $$
We choose the complex number $\xi (n)$ satisfying $|\xi (n)| = 1$ and such that
$$ \begin{equation} \xi (n)\int_{\mathfrak m}{f_2(\alpha)f_3(\alpha)f_4^2(\alpha)e(-\alpha n)}\,d\alpha=\biggl| \int_{\mathfrak m}{f_2(\alpha)f_3(\alpha)f_4^2(\alpha)e(-\alpha n)}\,d\alpha \biggr|. \end{equation} \tag{4.19} $$
Set $Z(N)= |\mathcal F(N)|$. From (4.18) and (4.19) we obtain
$$ \begin{equation} \begin{aligned} \, \frac{Z(N)N^{1/3}}{\log^4 N} &\ll \sum_{n \in \mathcal F(N)}{\frac{n^{1/3}}{\log^4 n}} \ll \int_{\mathfrak m}{f_2(\alpha)f_3(\alpha)f_4^2(\alpha)K(\alpha)}\,d\alpha \nonumber \\ &\ll \biggl(\int_{\mathfrak m_1}+\int_{\mathfrak m_2}\biggr){f_2(\alpha)f_3(\alpha)f_4^2(\alpha)K(\alpha)}\,d\alpha, \end{aligned} \end{equation} \tag{4.20} $$
where
$$ \begin{equation*} K(\alpha)=\sum_{n \in \mathcal F(N)}{\xi(n)e(-\alpha n)}. \end{equation*} \notag $$
From (4.20) and Propositions 4.1 and 4.2 we obtain
$$ \begin{equation} \frac{Z(N)N^{1/3}}{\log^4 N} \ll {Z(N)}^{1/2}N^{153/192+\varepsilon}+Z(N)N^{1/3}Q_0^{-1}. \end{equation} \tag{4.21} $$
Therefore,
$$ \begin{equation*} Z(N) \ll N^{89/96+\varepsilon} \end{equation*} \notag $$
and
$$ \begin{equation*} \mathcal E(N) \ll N^{89/96+\varepsilon}+\sum_{1\leqslant 2^j \leqslant N^{1/12}}{Z\biggl(\frac{N}{2^j}\biggr)} \ll N^{89/96+\varepsilon}. \end{equation*} \notag $$
Now the proof of Proposition 2.2 is complete.

Bibliography

1. J. Brüdern, “Sums of squares and higher powers. I”, J. Lond. Math. Soc. (2), 35:2 (1987), 233–243  crossref  mathscinet  zmath
2. K. Kawada and T. D. Wooley, “Relations between exceptional sets for additive problems”, J. Lond. Math. Soc. (2), 82:2 (2010), 437–458  crossref  mathscinet  zmath
3. A. V. Kumchev, “On Weyl sums over primes and almost primes”, Michigan Math. J., 54:2 (2006), 243–268  crossref  mathscinet  zmath
4. Yuhui Liu, “On a Waring–Goldbach problem involving squares, cubes and biquadrates”, Bull. Korean Math. Soc., 55:6 (2018), 1659–1666  crossref  mathscinet  zmath
5. Xiao Dong Lü, “Waring–Goldbach problem: two squares, two cubes and two biquadrates”, Chinese Ann. Math. Ser. A, 36:2 (2015), 161–174 (in Chinese)  crossref  mathscinet  zmath; English transl. in Chinese J. Contemp. Math., 36:2 (2015), 145–156
6. Reviews in number theory, Reviews reprinted in Mathematical reviews, 1940 through 1972, volumes 1–44 inclusive, v. 1–6, ed. W. J. LeVeque, Amer. Math. Soc., Providence, RI, 1974, v+420 pp., v+672 pp., vi+377 pp., vi+582 pp., v+470 pp., ix+410 pp.  mathscinet  mathscinet  mathscinet  mathscinet  mathscinet  mathscinet  zmath
7. R. C. Vaughan, On the representation of numbers as sums of squares, cubes and fourth powers and on the representation of numbers as sums of powers of primes, Ph.D. thesis, Univ. London, 1970
8. R. C. Vaughan, The Hardy–Littlewood method, Cambridge Tracts in Math., 125, 2nd ed., Cambridge Univ. Press, Cambridge, 1997, xiv+232 pp.  crossref  mathscinet  zmath
9. T. D. Wooley, “Slim exceptional sets for sums of four squares”, Proc. Lond. Math. Soc. (3), 85:1 (2002), 1–21  crossref  mathscinet  zmath
10. Min Zhang and Jinjiang Li, “Exceptional set for sums of unlike powers of primes”, Taiwanese J. Math., 22:4 (2018), 779–811  crossref  mathscinet  zmath
11. Min Zhang and Jinjiang Li, “Exceptional set for sums of unlike powers of primes (II)”, Ramanujan J., 55:1 (2021), 131–140  crossref  mathscinet  zmath
12. Lilu Zhao, “On the Waring–Goldbach problem for fourth and sixth powers”, Proc. Lond. Math. Soc. (3), 108:6 (2014), 1593–1622  crossref  mathscinet  zmath
13. Li Zhu, “Goldbach–Linnik type problems with unequal powers of primes”, J. Korean Math. Soc., 59:2 (2022), 407–420  crossref  mathscinet  zmath

Citation: Sh. Tian, “Slim exceptional sets of Waring–Goldbach problem: two squares, two cubes and two biquadrates”, Sb. Math., 216:1 (2025), 87–98
Citation in format AMSBIB
\Bibitem{Tia25}
\by Sh.~Tian
\paper Slim exceptional sets of Waring--Goldbach problem: two squares, two cubes and two biquadrates
\jour Sb. Math.
\yr 2025
\vol 216
\issue 1
\pages 87--98
\mathnet{http://mi.mathnet.ru/eng/sm10001}
\crossref{https://doi.org/10.4213/sm10001e}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4882268}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2025SbMat.216...87T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001454604100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105001450099}
Linking options:
  • https://www.mathnet.ru/eng/sm10001
  • https://doi.org/10.4213/sm10001e
  • https://www.mathnet.ru/eng/sm/v216/i1/p96
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:410
    Russian version PDF:3
    English version PDF:78
    Russian version HTML:10
    English version HTML:177
    References:40
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025