Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2005, Volume 196, Issue 2, Pages 287–307
DOI: https://doi.org/10.1070/SM2005v196n02ABEH000881
(Mi sm1270)
 

This article is cited in 1 scientific paper (total in 1 paper)

Piecewise lexsegment ideals in exterior algebras

D. A. Shakin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The problem of describing the Hilbert functions of homogeneous ideals of an exterior algebra over a field containing a fixed monomial ideal $I$ is considered. For this purpose the notion of a piecewise lexsegment ideal in an exterior algebra is introduced generalizing the notion of a lexsegment ideal. It is proved that if $I$ is a piecewise lexsegment ideal, then it is possible to describe the Hilbert functions of the homogeneous ideals containing $I$ in a way similar to that suggested by Kruskal and Katona for the situation $I=0$. Moreover, a generalization of the extremal properties of lexsegment ideals is obtained (the inequality for the Betti numbers).
Received: 26.03.2004
Bibliographic databases:
UDC: 512.714
MSC: Primary 13D40; Secondary 13D02, 13F20, 13F55
Language: English
Original paper language: Russian
Citation: D. A. Shakin, “Piecewise lexsegment ideals in exterior algebras”, Sb. Math., 196:2 (2005), 287–307
Citation in format AMSBIB
\Bibitem{Sha05}
\by D.~A.~Shakin
\paper Piecewise lexsegment ideals in exterior algebras
\jour Sb. Math.
\yr 2005
\vol 196
\issue 2
\pages 287--307
\mathnet{http://mi.mathnet.ru/eng/sm1270}
\crossref{https://doi.org/10.1070/SM2005v196n02ABEH000881}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2142493}
\zmath{https://zbmath.org/?q=an:1100.13019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000229078800012}
\elib{https://elibrary.ru/item.asp?id=9135676}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-18944407031}
Linking options:
  • https://www.mathnet.ru/eng/sm1270
  • https://doi.org/10.1070/SM2005v196n02ABEH000881
  • https://www.mathnet.ru/eng/sm/v196/i2/p139
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025