Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2006, Volume 197, Issue 7, Pages 977–995
DOI: https://doi.org/10.1070/SM2006v197n07ABEH003785
(Mi sm1591)
 

This article is cited in 4 scientific papers (total in 4 papers)

A generalization of the concept of sectorial operator

M. F. Gorodnii, A. V. Chaikovskii

National Taras Shevchenko University of Kyiv
References:
Abstract: Let $B$ be a Banach space and $G\colon[0,+\infty)\to(0,+\infty)$ a non-increasing function such that $G(t)\to0$ as $t\to\infty$ and $1/G$ is a Lipschitz function on $[0,+\infty)$.
A linear operator $T\colon D(T)\subset B\to B$ is said to be $G$-sectorial if there exist constants $a\in\mathbb R$ and $\varphi\in(0,\pi/2)$ such that the spectrum of $T$ lies in the set
$$ S_{a,\varphi}:=\{z\in\mathbb C\mid z\ne a,\ \lvert\arg(z-a)\rvert<\varphi\} $$
and
$$ \text{there exists } M>0\quad \text{such that } \|R_\lambda(T)\|\le MG(|\lambda-a|)\text{ for }\lambda\notin S_{a,\varphi}, $$
where $R_\lambda(T)$ is the resolvent of the operator $T$.
The properties of the operator exponential and fractional powers of a $G$-sectorial operator are analysed alongside the question of the unique solubility of the Cauchy problem for the linear differential operator with $G$-sectorial operator-valued coefficient.
Bibliography: 8 titles.
Received: 23.11.2004 and 17.03.2006
Bibliographic databases:
UDC: 517.98
MSC: 47Bxx
Language: English
Original paper language: Russian
Citation: M. F. Gorodnii, A. V. Chaikovskii, “A generalization of the concept of sectorial operator”, Sb. Math., 197:7 (2006), 977–995
Citation in format AMSBIB
\Bibitem{GorCha06}
\by M.~F.~Gorodnii, A.~V.~Chaikovskii
\paper A~generalization of the concept of sectorial operator
\jour Sb. Math.
\yr 2006
\vol 197
\issue 7
\pages 977--995
\mathnet{http://mi.mathnet.ru/eng/sm1591}
\crossref{https://doi.org/10.1070/SM2006v197n07ABEH003785}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2277330}
\zmath{https://zbmath.org/?q=an:1157.47028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241860100002}
\elib{https://elibrary.ru/item.asp?id=9296522}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33751045336}
Linking options:
  • https://www.mathnet.ru/eng/sm1591
  • https://doi.org/10.1070/SM2006v197n07ABEH003785
  • https://www.mathnet.ru/eng/sm/v197/i7/p29
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025