|
This article is cited in 2 scientific papers (total in 2 papers)
On the completeness and quasipower basis property of systems $\{z^nf(\lambda_nz)\}$
V. A. Oskolkov
Abstract:
This paper discusses questions of completeness and the quasipower property in spaces $A_R$ of systems of functions $\{z^nf(\lambda_nz)\}$ under some natural conditions on the Taylor coefficients of the function $f(z)$, assumed regular in a disk $|z|<r\in(0,+\infty]$. The complex numbers $\lambda_n$ ($n=0,1,\dots$) are subject to the condition $|\lambda_n|\leqslant1$.
Bibliography: 8 titles.
Received: 21.12.1987
Citation:
V. A. Oskolkov, “On the completeness and quasipower basis property of systems $\{z^nf(\lambda_nz)\}$”, Math. USSR-Sb., 66:2 (1990), 383–392
Linking options:
https://www.mathnet.ru/eng/sm1616https://doi.org/10.1070/SM1990v066n02ABEH001361 https://www.mathnet.ru/eng/sm/v180/i3/p375
|
|