Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1987, Volume 57, Issue 1, Pages 1–19
DOI: https://doi.org/10.1070/SM1987v057n01ABEH003052
(Mi sm1803)
 

This article is cited in 2 scientific papers (total in 2 papers)

Algebras generated by multidimensional singular integral operators and by coefficients admitting discontinuities of homogeneous type

N. L. Vasilevskii
References:
Abstract: Let $\mathscr L$ be a union of finitely many smooth orientable bounded disjoint surfaces in $\mathbf R^n$ of various dimensions (between $1$ and $n-1$), and let $PC(\dot{\mathbf R}^n,\mathscr L)$ be the algebra of functions continuous on $\dot{\mathbf R}^n\setminus\operatorname{Int}\mathscr L$ ($\dot{\mathbf R}^n=\mathbf R^n\cup\{\infty\}$) and having discontinuities of homogeneous type on surfaces in $\mathscr L$. This article includes a description of the algebra of symbols for the algebra $\mathscr R$ generated by all the operators of the form $A=a(x)M$ acting in $L_2(\mathbf R^n)$, where $a(x)\in PC(\dot{\mathbf R}^n,\mathscr L)$ and $M=F^{-1}m(\xi)F$, with $F$ and $F^{-1}$ the direct and inverse Fourier transformations, respectively, and with $m(\xi)$ a homogeneous function on $\mathbf R^n$ of degree zero whose restriction to the unit sphere in $\mathbf R^n$ is continuous. A criterion for operators in $\mathscr R$ to be Noetherian operators is given.
Bibliography: 25 titles.
Received: 27.06.1984
Bibliographic databases:
UDC: 517.983+517.986.3
MSC: Primary 45E99, 47G05, 47D25; Secondary 35S99, 46L05, 47A53
Language: English
Original paper language: Russian
Citation: N. L. Vasilevskii, “Algebras generated by multidimensional singular integral operators and by coefficients admitting discontinuities of homogeneous type”, Math. USSR-Sb., 57:1 (1987), 1–19
Citation in format AMSBIB
\Bibitem{Vas86}
\by N.~L.~Vasilevskii
\paper Algebras generated by multidimensional singular integral operators and by coefficients admitting discontinuities of homogeneous type
\jour Math. USSR-Sb.
\yr 1987
\vol 57
\issue 1
\pages 1--19
\mathnet{http://mi.mathnet.ru/eng/sm1803}
\crossref{https://doi.org/10.1070/SM1987v057n01ABEH003052}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=830092}
\zmath{https://zbmath.org/?q=an:0623.47064|0608.47053}
Linking options:
  • https://www.mathnet.ru/eng/sm1803
  • https://doi.org/10.1070/SM1987v057n01ABEH003052
  • https://www.mathnet.ru/eng/sm/v171/i1/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025