Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1986, Volume 53, Issue 1, Pages 69–87
DOI: https://doi.org/10.1070/SM1986v053n01ABEH002910
(Mi sm2072)
 

This article is cited in 15 scientific papers (total in 15 papers)

Approximation characterization of classes of functions on continua of the complex plane

V. V. Andrievskii
References:
Abstract: One possible method is suggested for the constructive description of function classes defined on continua of the complex plane for which the traditional (in this subject area) description in terms of distances from boundary points to corresponding level curves of the outer Riemann function generally does not exist.
The main idea of the constructions and results presented consists in taking account of the growth of derivatives of polynomials approximating the function.
Bibliography: 28 titles.
Received: 17.10.1983
Bibliographic databases:
UDC: 517.53
MSC: 30E10
Language: English
Original paper language: Russian
Citation: V. V. Andrievskii, “Approximation characterization of classes of functions on continua of the complex plane”, Math. USSR-Sb., 53:1 (1986), 69–87
Citation in format AMSBIB
\Bibitem{And84}
\by V.~V.~Andrievskii
\paper Approximation characterization of classes of functions on continua of the complex plane
\jour Math. USSR-Sb.
\yr 1986
\vol 53
\issue 1
\pages 69--87
\mathnet{http://mi.mathnet.ru/eng/sm2072}
\crossref{https://doi.org/10.1070/SM1986v053n01ABEH002910}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=760414}
\zmath{https://zbmath.org/?q=an:0606.30036}
Linking options:
  • https://www.mathnet.ru/eng/sm2072
  • https://doi.org/10.1070/SM1986v053n01ABEH002910
  • https://www.mathnet.ru/eng/sm/v167/i1/p70
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:733
    Russian version PDF:159
    English version PDF:61
    References:133
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025