Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1987, Volume 56, Issue 2, Pages 491–513
DOI: https://doi.org/10.1070/SM1987v056n02ABEH003048
(Mi sm2172)
 

This article is cited in 12 scientific papers (total in 12 papers)

Sharp order estimates for best rational approximations in classes of functions representable as convolutions

V. N. Rusak
References:
Abstract: Let $h(t)$ be a function of bounded variation, $[\operatorname{Var}h(t)]_0^{2\pi}\leqslant1$, and $D_r(t)$ the Weyl kernel of order $r$, i.e. $D_r(t)=\sum_{k=1}^\infty k^{-r}\cos\bigl(kt-\frac {r\pi}{2}\bigr)$, $r>0$. Denote by $W_{2\pi}^r V$ and $W_{2\pi}^r V_0$ the classes of functions represented by the corresponding formulas
$$ f(k)=\frac{a_0}2+\frac1\pi\int_0^{2\pi}D_r(x-t)h(t)\,dt, \qquad f(x)=\frac1\pi\int_0^{2\pi}D_{r+1}(x-t)\,dh(t). $$
The conjugate classes of functions $\widetilde{W_{2\pi}^r V}$ and $\widetilde{W_{2\pi}^r V_0}$ are also considered; they are convolutions of conjugate Weyl kernels with functions of bounded variation.
The following main result is proved:
$$ \sup_{f\in K^r}\mathbf R_n^T(f)\asymp\frac1{n^{r+1}}, $$
where $\mathbf R_n^T(f)$ is the best uniform approximation by trigonometric rational functions of order at most $n$, and $K^r$ is one of the classes
$$ W_{2\pi}^r V,\qquad W_{2\pi}^r V_0,\qquad\widetilde{W_{2\pi}^r V},\qquad\widetilde{W_{2\pi}^r V_0}. $$

Bibliography: 13 titles.
Received: 21.09.1984
Bibliographic databases:
UDC: 517.51+517.53
MSC: 41A20, 42A10, 41A25
Language: English
Original paper language: Russian
Citation: V. N. Rusak, “Sharp order estimates for best rational approximations in classes of functions representable as convolutions”, Math. USSR-Sb., 56:2 (1987), 491–513
Citation in format AMSBIB
\Bibitem{Rus85}
\by V.~N.~Rusak
\paper Sharp order estimates for best rational approximations in classes of functions representable as convolutions
\jour Math. USSR-Sb.
\yr 1987
\vol 56
\issue 2
\pages 491--513
\mathnet{http://mi.mathnet.ru/eng/sm2172}
\crossref{https://doi.org/10.1070/SM1987v056n02ABEH003048}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=820399}
\zmath{https://zbmath.org/?q=an:0632.41010}
Linking options:
  • https://www.mathnet.ru/eng/sm2172
  • https://doi.org/10.1070/SM1987v056n02ABEH003048
  • https://www.mathnet.ru/eng/sm/v170/i4/p492
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025