|
This article is cited in 2 scientific papers (total in 2 papers)
Smoothness of generalized solutions of the equation $\biggl(\lambda-\displaystyle\sum_{i,j}\nabla_ia_{ij}\nabla_j\biggr)u=f$ with continuous coefficients
Yu. A. Semenov
Abstract:
It is shown that if $u$ is a weak solution in $L^2(\mathbf R^l)$ of the equation
$$
\biggl(\lambda-\sum_{i,j=1}^l\nabla_i a_{ij}\nabla_j\biggr)u=f, \qquad
f\in L^1\cap L^\infty, \quad \lambda\geqslant0,
$$
with continuous $a_{ij}(\,\cdot\,)$ and the matrix $(a_{ij})$ is real-valued, symmetric, and positive-definite, then $u\in\bigcap_{1<q<\infty}L_1^q(\mathbf R^l)$, where
$L_k^p(\mathbf R^l)$ is the Sobolev space of functions whose derivatives through order $k$ are $p$-integrable.
It is also proved that if $(a_{ij})=(k^2\delta_{ij})$, $\delta_{ij}$ the Kronecker symbol, $1\leqslant k$, and $\overrightarrow\nabla k\in L^4$, then for a certain extension $A\supset 1-\overrightarrow\nabla k^2\overrightarrow\nabla\upharpoonright C_0^\infty$ it is true that $A^{-1}[L^2\cap L^\infty]\subset L_2^2 \cap L_1^4$, and, moreover, $k^2\nabla_i\nabla_j u \in L^2$ and $k\nabla_i u\in L^4$ $\forall u\in A^{-1}[L^2\cap L^\infty]$.
Bibliography: 5 titles.
Received: 22.10.1980
Citation:
Yu. A. Semenov, “Smoothness of generalized solutions of the equation $\biggl(\lambda-\displaystyle\sum_{i,j}\nabla_ia_{ij}\nabla_j\biggr)u=f$ with continuous coefficients”, Math. USSR-Sb., 46:3 (1983), 403–415
Linking options:
https://www.mathnet.ru/eng/sm2260https://doi.org/10.1070/SM1983v046n03ABEH002942 https://www.mathnet.ru/eng/sm/v160/i3/p399
|
|