Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1983, Volume 46, Issue 3, Pages 403–415
DOI: https://doi.org/10.1070/SM1983v046n03ABEH002942
(Mi sm2260)
 

This article is cited in 2 scientific papers (total in 2 papers)

Smoothness of generalized solutions of the equation $\biggl(\lambda-\displaystyle\sum_{i,j}\nabla_ia_{ij}\nabla_j\biggr)u=f$ with continuous coefficients

Yu. A. Semenov
References:
Abstract: It is shown that if $u$ is a weak solution in $L^2(\mathbf R^l)$ of the equation
$$ \biggl(\lambda-\sum_{i,j=1}^l\nabla_i a_{ij}\nabla_j\biggr)u=f, \qquad f\in L^1\cap L^\infty, \quad \lambda\geqslant0, $$
with continuous $a_{ij}(\,\cdot\,)$ and the matrix $(a_{ij})$ is real-valued, symmetric, and positive-definite, then $u\in\bigcap_{1<q<\infty}L_1^q(\mathbf R^l)$, where $L_k^p(\mathbf R^l)$ is the Sobolev space of functions whose derivatives through order $k$ are $p$-integrable.
It is also proved that if $(a_{ij})=(k^2\delta_{ij})$, $\delta_{ij}$ the Kronecker symbol, $1\leqslant k$, and $\overrightarrow\nabla k\in L^4$, then for a certain extension $A\supset 1-\overrightarrow\nabla k^2\overrightarrow\nabla\upharpoonright C_0^\infty$ it is true that $A^{-1}[L^2\cap L^\infty]\subset L_2^2 \cap L_1^4$, and, moreover, $k^2\nabla_i\nabla_j u \in L^2$ and $k\nabla_i u\in L^4$ $\forall u\in A^{-1}[L^2\cap L^\infty]$.
Bibliography: 5 titles.
Received: 22.10.1980
Bibliographic databases:
UDC: 517.947
MSC: Primary 35B65, 35D10; Secondary 46E35
Language: English
Original paper language: Russian
Citation: Yu. A. Semenov, “Smoothness of generalized solutions of the equation $\biggl(\lambda-\displaystyle\sum_{i,j}\nabla_ia_{ij}\nabla_j\biggr)u=f$ with continuous coefficients”, Math. USSR-Sb., 46:3 (1983), 403–415
Citation in format AMSBIB
\Bibitem{Sem82}
\by Yu.~A.~Semenov
\paper Smoothness of generalized solutions of the equation $\biggl(\lambda-\displaystyle\sum_{i,j}\nabla_ia_{ij}\nabla_j\biggr)u=f$ with continuous coefficients
\jour Math. USSR-Sb.
\yr 1983
\vol 46
\issue 3
\pages 403--415
\mathnet{http://mi.mathnet.ru/eng/sm2260}
\crossref{https://doi.org/10.1070/SM1983v046n03ABEH002942}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=663151}
\zmath{https://zbmath.org/?q=an:0519.35025}
Linking options:
  • https://www.mathnet.ru/eng/sm2260
  • https://doi.org/10.1070/SM1983v046n03ABEH002942
  • https://www.mathnet.ru/eng/sm/v160/i3/p399
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025