|
This article is cited in 12 scientific papers (total in 12 papers)
Decomposition of optional supermartingales
L. I. Gal'chuk
Abstract:
Let $X=(X_t, \mathscr F_t)$ be an optional submartingale of the class $(D)$. It is proved that there exist an optional martingale $m=(m_t, \mathscr F_t)$ and a strongly predictable process $A=(A_t, \mathscr F_t)$ such that the Doob decomposition $X_t=m_t+A_t$ is valid.
Bibliography: 10 titles.
Received: 04.04.1980
Citation:
L. I. Gal'chuk, “Decomposition of optional supermartingales”, Math. USSR-Sb., 43:2 (1982), 145–158
Linking options:
https://www.mathnet.ru/eng/sm2380https://doi.org/10.1070/SM1982v043n02ABEH002440 https://www.mathnet.ru/eng/sm/v157/i2/p163
|
|