Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1982, Volume 43, Issue 2, Pages 181–198
DOI: https://doi.org/10.1070/SM1982v043n02ABEH002444
(Mi sm2382)
 

This article is cited in 42 scientific papers (total in 42 papers)

An asymptotic expansion of the solution of a second order elliptic equation with periodic rapidly oscillating coefficients

E. V. Sevost'yanova
References:
Abstract: This paper studies the asymptotic behavior of the fundamental solution $K_\varepsilon(x,y)$ of the equation
$$ -\frac\partial{\partial x_i}\biggl(a_{ij}\biggl(\frac x\varepsilon\biggr)\frac\partial{\partial x_j}u_\varepsilon\biggr)=f(x), $$
specified on the whole space $\mathbf R^n$, $n>2$, as $\varepsilon\to0$. The coefficients $a_{ij}(y)$ are periodic functions which satisfy the conditions of ellipticity, symmetry, and infinite smoothness.
The main result is the construction of the asymptotics of $K_\varepsilon(x,y)$ in the form
$$ K_\varepsilon(x,y)=\sum^M_{s=0}\varepsilon^s\Phi_s\biggl(x-y,\frac x\varepsilon,\frac y\varepsilon\biggr)+\varepsilon^{M+1}R_M(x,y,\varepsilon), $$
where $M$ is an arbitrary positive integer, the $\Phi_s(x,y,z)$ are homogeneous of degree $-s-n+2$ in the first argument and periodic in the remaining arguments, and for the remainder term $R_M(x,y,\varepsilon)$ on the set $|x-y|>\delta$, $\delta>0$, the estimate
$$ |R_M(x,y,\varepsilon)|<\frac{C_M(\delta)}{|x-y|^{M+n-1}} $$
holds, where the constants $C_M(\delta)$ are independent of $x$, $y$, and $\varepsilon$.
Figures: 1.
Bibliography: 9 titles.
Received: 28.03.1980
Bibliographic databases:
UDC: 517.946
MSC: Primary 35J15, 35B40; Secondary 35J05
Language: English
Original paper language: Russian
Citation: E. V. Sevost'yanova, “An asymptotic expansion of the solution of a second order elliptic equation with periodic rapidly oscillating coefficients”, Math. USSR-Sb., 43:2 (1982), 181–198
Citation in format AMSBIB
\Bibitem{Sev81}
\by E.~V.~Sevost'yanova
\paper An asymptotic expansion of the solution of a~second order elliptic equation with periodic rapidly oscillating coefficients
\jour Math. USSR-Sb.
\yr 1982
\vol 43
\issue 2
\pages 181--198
\mathnet{http://mi.mathnet.ru/eng/sm2382}
\crossref{https://doi.org/10.1070/SM1982v043n02ABEH002444}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=622145}
\zmath{https://zbmath.org/?q=an:0494.35019|0469.35024}
Linking options:
  • https://www.mathnet.ru/eng/sm2382
  • https://doi.org/10.1070/SM1982v043n02ABEH002444
  • https://www.mathnet.ru/eng/sm/v157/i2/p204
  • This publication is cited in the following 42 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025