Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1982, Volume 43, Issue 4, Pages 443–471
DOI: https://doi.org/10.1070/SM1982v043n04ABEH002574
(Mi sm2412)
 

This article is cited in 6 scientific papers (total in 6 papers)

On approximation properties of certain incomplete systems

A. A. Talalyan
References:
Abstract: Let $\{\varphi_n(x)\}$ be a system of almost-everywhere finite measurable functions on $[0,1]$ that has one of the following properties:
I. $\{\varphi_n(x)\}^\infty_{n=1}$ is a system for representing the functions in $L_p[0,1]$, $0<p<1$, by convergent series.
II. $\{\varphi_n(x)\}^\infty_{n=1}$ is a system for representing the functions in $L_p[0,1]$, $0<p<1$, by almost-everywhere convergent series.
III. $\{\varphi_n(x)\}^\infty_{n=1}$ has the strong Luzing $C$-property.
IV. $\{\varphi_n(x)\}^\infty_{n=1}$ can be multiplicatively completed to form a system for representing the functions in $L_p[0,1]$, $p\geqslant1$, by series that converge in the $L_p[0,1]$-metric.
It is shown that if $\{\varphi_n(x)\}^\infty_{n=1}$ is a system having one of the properties I–IV, then any subsystem of it with the form $\{\varphi_k(x)\}^\infty_{k=N+1}$ ($N$ any natural number) also has this property.
Bibliography: 9 titles.
Received: 29.12.1980
Bibliographic databases:
UDC: 517.52
MSC: Primary 42C15, 46E30; Secondary 46B15
Language: English
Original paper language: Russian
Citation: A. A. Talalyan, “On approximation properties of certain incomplete systems”, Math. USSR-Sb., 43:4 (1982), 443–471
Citation in format AMSBIB
\Bibitem{Tal81}
\by A.~A.~Talalyan
\paper On~approximation properties of certain incomplete systems
\jour Math. USSR-Sb.
\yr 1982
\vol 43
\issue 4
\pages 443--471
\mathnet{http://mi.mathnet.ru/eng/sm2412}
\crossref{https://doi.org/10.1070/SM1982v043n04ABEH002574}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=629624}
\zmath{https://zbmath.org/?q=an:0503.42025}
Linking options:
  • https://www.mathnet.ru/eng/sm2412
  • https://doi.org/10.1070/SM1982v043n04ABEH002574
  • https://www.mathnet.ru/eng/sm/v157/i4/p499
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025