|
This article is cited in 11 scientific papers (total in 11 papers)
A priori estimates, existence theorems, and the behavior at infinity of solutions of quasielliptic equations in $\mathbf{R}^n$
L. A. Bagirov
Abstract:
The equation
$$
A(x,D)u(x)=\sum_{\langle\alpha\cdot\theta\rangle\leqslant m}a_\alpha(x)D^\alpha u(x)=f(x),\qquad x\in\mathbf R^n,
$$
is studied in this paper. Here $\theta=(\theta_1,\dots,\theta_n)$ is the
index of quasihomogeneity of the operator $A$ and $\langle\alpha\cdot\theta\rangle=\alpha_1\theta_1+\dots+\alpha_n\theta_n$.
The quasiellipticity condition
$$
\biggl|\sum_{\langle\alpha\cdot\theta\rangle=m}a_\alpha(x)\xi^\alpha\biggr|\geqslant\delta\sum_{k=1}^n|\xi_k|^{m_k},\qquad\delta>0,\quad\xi\in\mathbf R^n,\quad x\in\mathbf R^n,\quad\frac{m_k}m=\theta_k^{-1},
$$
is assumed to hold. Theorems on the Noether property of $A$ in weighted spaces are proved under two types of conditions on the behavior of the coefficients $a_\alpha(x)$ at infinity.
Bibliography: 18 titles.
Received: 29.05.1978
Citation:
L. A. Bagirov, “A priori estimates, existence theorems, and the behavior at infinity of solutions of quasielliptic equations in $\mathbf{R}^n$”, Math. USSR-Sb., 38:4 (1981), 437–452
Linking options:
https://www.mathnet.ru/eng/sm2506https://doi.org/10.1070/SM1981v038n04ABEH001447 https://www.mathnet.ru/eng/sm/v152/i4/p475
|
|