Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1981, Volume 38, Issue 4, Pages 437–452
DOI: https://doi.org/10.1070/SM1981v038n04ABEH001447
(Mi sm2506)
 

This article is cited in 11 scientific papers (total in 11 papers)

A priori estimates, existence theorems, and the behavior at infinity of solutions of quasielliptic equations in $\mathbf{R}^n$

L. A. Bagirov
References:
Abstract: The equation
$$ A(x,D)u(x)=\sum_{\langle\alpha\cdot\theta\rangle\leqslant m}a_\alpha(x)D^\alpha u(x)=f(x),\qquad x\in\mathbf R^n, $$
is studied in this paper. Here $\theta=(\theta_1,\dots,\theta_n)$ is the index of quasihomogeneity of the operator $A$ and $\langle\alpha\cdot\theta\rangle=\alpha_1\theta_1+\dots+\alpha_n\theta_n$. The quasiellipticity condition
$$ \biggl|\sum_{\langle\alpha\cdot\theta\rangle=m}a_\alpha(x)\xi^\alpha\biggr|\geqslant\delta\sum_{k=1}^n|\xi_k|^{m_k},\qquad\delta>0,\quad\xi\in\mathbf R^n,\quad x\in\mathbf R^n,\quad\frac{m_k}m=\theta_k^{-1}, $$
is assumed to hold. Theorems on the Noether property of $A$ in weighted spaces are proved under two types of conditions on the behavior of the coefficients $a_\alpha(x)$ at infinity.
Bibliography: 18 titles.
Received: 29.05.1978
Bibliographic databases:
UDC: 517.946
MSC: Primary 35R99; Secondary 35B45, 35B40
Language: English
Original paper language: Russian
Citation: L. A. Bagirov, “A priori estimates, existence theorems, and the behavior at infinity of solutions of quasielliptic equations in $\mathbf{R}^n$”, Math. USSR-Sb., 38:4 (1981), 437–452
Citation in format AMSBIB
\Bibitem{Bag79}
\by L.~A.~Bagirov
\paper A~priori estimates, existence theorems, and the behavior at infinity of solutions of quasielliptic equations in $\mathbf{R}^n$
\jour Math. USSR-Sb.
\yr 1981
\vol 38
\issue 4
\pages 437--452
\mathnet{http://mi.mathnet.ru/eng/sm2506}
\crossref{https://doi.org/10.1070/SM1981v038n04ABEH001447}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=562205}
\zmath{https://zbmath.org/?q=an:0462.35010|0421.35007}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981LQ11400001}
Linking options:
  • https://www.mathnet.ru/eng/sm2506
  • https://doi.org/10.1070/SM1981v038n04ABEH001447
  • https://www.mathnet.ru/eng/sm/v152/i4/p475
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025