|
This article is cited in 9 scientific papers (total in 10 papers)
On the asymptotic properties and necessary conditions for existence of solutions of nonlinear second order elliptic equations
I. Kametaka, O. A. Oleinik
Abstract:
In this paper functions $u(x)$ satisfying the inequality $L(u)+k(x)f(u)\leqslant0$ in a domain $\Omega$ are studied. Here $L(u)$ is a linear second order elliptic operator with positive definite characteristic form, $k(x)\geqslant0$, and $f(u)$ is defined in an interval $u^-<u<u^+$, in which $f(u)>0$, $f'(u)\geqslant0$ and $\int_u^{u^+}\frac{ds}{f(s)}<\infty$.
Bibliography: 13 titles.
Received: 18.07.1978
Citation:
I. Kametaka, O. A. Oleinik, “On the asymptotic properties and necessary conditions for existence of solutions of nonlinear second order elliptic equations”, Math. USSR-Sb., 35:6 (1979), 823–849
Linking options:
https://www.mathnet.ru/eng/sm2696https://doi.org/10.1070/SM1979v035n06ABEH001626 https://www.mathnet.ru/eng/sm/v149/i4/p572
|
|