Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1989, Volume 62, Issue 2, Pages 349–371
DOI: https://doi.org/10.1070/SM1989v062n02ABEH003243
(Mi sm2761)
 

This article is cited in 2 scientific papers (total in 2 papers)

Comparison theorems for solutions of hyperbolic equations

A. K. Gushchin, V. P. Mikhailov
References:
Abstract: This paper is devoted to the study of uniform quasiasymptotics of the solution of the second mixed problem for the uniformly hyperbolic equation
\begin{equation} \begin{gathered} p(x)u_{tt}-\sum^n_{i,j=1}(a_{ij}(x)u_{x_i})_{x_j}=f(t,x),\qquad t>0,\quad x\in\Omega, \\ \frac{\partial u}{\partial N} \biggl|_{\partial\Omega}=0,\quad u|_{t=0}=\varphi(x),\quad u_t|_{t=0}=\psi(x), \end{gathered} \end{equation}
where $\Omega$ is an unbounded domain in $\mathbf R_n$ which satisfies certain conditions, the main one of which is a condition of “isoperimetric” type, and $N$ is the conormal to $\partial\Omega$.
One of the results is a comparison theorem in which necessary and sufficient conditions are established for the existence of uniform quasiasymptotics of the solution of problem (1) if the uniform quasiasymptotics is known to exist for the solution of a problem differing from problem (1) only by the coefficient of the second derivative with respect to time.
Bibliography: 22 titles.
Received: 14.05.1987
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 35L20, 35B40
Language: English
Original paper language: Russian
Citation: A. K. Gushchin, V. P. Mikhailov, “Comparison theorems for solutions of hyperbolic equations”, Math. USSR-Sb., 62:2 (1989), 349–371
Citation in format AMSBIB
\Bibitem{GusMik87}
\by A.~K.~Gushchin, V.~P.~Mikhailov
\paper Comparison theorems for solutions of hyperbolic equations
\jour Math. USSR-Sb.
\yr 1989
\vol 62
\issue 2
\pages 349--371
\mathnet{http://mi.mathnet.ru/eng/sm2761}
\crossref{https://doi.org/10.1070/SM1989v062n02ABEH003243}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=922629}
\zmath{https://zbmath.org/?q=an:0678.35063}
Linking options:
  • https://www.mathnet.ru/eng/sm2761
  • https://doi.org/10.1070/SM1989v062n02ABEH003243
  • https://www.mathnet.ru/eng/sm/v176/i3/p353
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025