Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1976, Volume 29, Issue 3, Pages 327–344
DOI: https://doi.org/10.1070/SM1976v029n03ABEH003671
(Mi sm2857)
 

This article is cited in 8 scientific papers (total in 9 papers)

On the representation of analytic functions by series of exponentials in a polycylindrical domain

A. F. Leont'ev
References:
Abstract: We prove the following
Theorem. {\it Let $D_p$ $(1\leqslant p\leqslant m)$ be a finite convex domain in the plane of the complex variable $z_p$, let $K_p(\varphi)$ be the support function of the domain $D_p$, and let $h_p(\varphi)=K_p(-\varphi)$. Then there exists a sequence of exponents $\{\lambda^{(p)}_k\}_{k=1}^\infty$ $($where the $\lambda^{(p)}_k$ $(k=1,2,\dots)$ are the zeros of an entire function $L_p(\lambda)$ of completely regular growth with indicator function $h_p(\varphi))$ such that any function $f(z_1,\dots,z_m)$ analytic in the domain $D=D_1\times\dots\times D_m$ can be represented in $D$ by the series
$$ f(z_1,\dots,z_m)=\sum^\infty_{k_1,\dots,k_m=1}a_{k_1,\dots,k_m}\exp\bigl\{\lambda^{(1)}_{k_1}z_1+\dots+ \lambda^{(m)}_{k_m}z_m\bigr\}, $$
which is absolutely convergent in $D$ and uniformly convergent inside $D$.}
For the case $m=1$ the theorem has been proved earlier (RZhMat., 1970, 10B132).
Bibliography: 5 titles.
Received: 26.02.1976
Bibliographic databases:
UDC: 517.5
MSC: Primary 32A05; Secondary 32A15, 47F05
Language: English
Original paper language: Russian
Citation: A. F. Leont'ev, “On the representation of analytic functions by series of exponentials in a polycylindrical domain”, Math. USSR-Sb., 29:3 (1976), 327–344
Citation in format AMSBIB
\Bibitem{Leo76}
\by A.~F.~Leont'ev
\paper On the representation of analytic functions by series of exponentials in a~polycylindrical domain
\jour Math. USSR-Sb.
\yr 1976
\vol 29
\issue 3
\pages 327--344
\mathnet{http://mi.mathnet.ru/eng/sm2857}
\crossref{https://doi.org/10.1070/SM1976v029n03ABEH003671}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=417439}
\zmath{https://zbmath.org/?q=an:0342.32002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1976FB03100003}
Linking options:
  • https://www.mathnet.ru/eng/sm2857
  • https://doi.org/10.1070/SM1976v029n03ABEH003671
  • https://www.mathnet.ru/eng/sm/v142/i3/p364
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025