Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1984, Volume 47, Issue 2, Pages 377–389
DOI: https://doi.org/10.1070/SM1984v047n02ABEH002649
(Mi sm2891)
 

This article is cited in 7 scientific papers (total in 7 papers)

Unitarity of the multiplicative group of an integral group ring

A. A. Bovdi
References:
Abstract: A homomorphism $f$ of a group $G$ into the multiplicative group of the ring of integers is called, in algebraic topology, an orientation homomorphism of the group $G$.
If $x=\sum_{g\in G}\alpha_g g$ is an element of the integral group ring $ZG$, we will let $x^f$ denote the element $\sum_{g\in G}\alpha_g f(g)g^{-1}$. An element $x$ of the multiplicative group $U(ZG)$ is called $f$-unitary if the inverse $x^{-1}$ coincides with $x^f$ or $x^{-f}$. The collection of all $f$-unitary elements of the group $U(ZG)$ form a subgroup $U_f(ZG)$. If $U_f(ZG)=U(ZG)$, the group $U(ZG)$ is said to be $f$-unitary.
Our study of the group $~U_f(ZG)$ is motivated by its appearance in algebraic topology, and was suggested by S. P. Novikov.
The main result of this article consists of necessary conditions, given in terms of the kernel $\operatorname{Ker}f$ and an element $b$ such that $G=\langle\operatorname{Ker}f,b\rangle$, for the group $U(ZG)$ to be $f$-unitary. We also consider to what extent these conditions are sufficient.
Bibliography: 3 titles.
Received: 07.04.1982
Bibliographic databases:
UDC: 519.48
MSC: 20C10, 20C12
Language: English
Original paper language: Russian
Citation: A. A. Bovdi, “Unitarity of the multiplicative group of an integral group ring”, Math. USSR-Sb., 47:2 (1984), 377–389
Citation in format AMSBIB
\Bibitem{Bov82}
\by A.~A.~Bovdi
\paper Unitarity of the multiplicative group of an integral group ring
\jour Math. USSR-Sb.
\yr 1984
\vol 47
\issue 2
\pages 377--389
\mathnet{http://mi.mathnet.ru/eng/sm2891}
\crossref{https://doi.org/10.1070/SM1984v047n02ABEH002649}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=678835}
\zmath{https://zbmath.org/?q=an:0527.16004|0511.16009}
Linking options:
  • https://www.mathnet.ru/eng/sm2891
  • https://doi.org/10.1070/SM1984v047n02ABEH002649
  • https://www.mathnet.ru/eng/sm/v161/i3/p387
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:508
    Russian version PDF:116
    English version PDF:34
    References:77
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025