Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1972, Volume 16, Issue 2, Pages 181–189
DOI: https://doi.org/10.1070/SM1972v016n02ABEH001419
(Mi sm3043)
 

This article is cited in 2 scientific papers (total in 2 papers)

On reflexive operator algebras

V. S. Shulman
References:
Abstract: Let $S$ be a weakly closed algebra of operators in a Hilbert space $H$, containing a maximal commutative $*$-subalgebra $\mathfrak A$ of the algebra of all bounded linear operators in $H$. One investigates the problem of the reflexivity of $S$ (an operator algebra is said to be reflexive if it contains every operator for which all invariant subspaces of the algebra are invariant). It is proved that each of the following two conditions is sufficient for the reflexivity of $S$: a) the lattice of the invariant subspaces of $S$ is symmetric; b) the algebra $\mathfrak A$ is generated by minimal projectors.
One obtains other results too, referring to more general problems.
Bibliography: 4 titles.
Received: 30.07.1970
Bibliographic databases:
UDC: 519.4
MSC: 47A15, 14D15
Language: English
Original paper language: Russian
Citation: V. S. Shulman, “On reflexive operator algebras”, Math. USSR-Sb., 16:2 (1972), 181–189
Citation in format AMSBIB
\Bibitem{Shu72}
\by V.~S.~Shulman
\paper On reflexive operator algebras
\jour Math. USSR-Sb.
\yr 1972
\vol 16
\issue 2
\pages 181--189
\mathnet{http://mi.mathnet.ru/eng/sm3043}
\crossref{https://doi.org/10.1070/SM1972v016n02ABEH001419}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=298436}
\zmath{https://zbmath.org/?q=an:0234.46067|0248.46051}
Linking options:
  • https://www.mathnet.ru/eng/sm3043
  • https://doi.org/10.1070/SM1972v016n02ABEH001419
  • https://www.mathnet.ru/eng/sm/v129/i2/p179
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025