Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1971, Volume 13, Issue 3, Pages 451–471
DOI: https://doi.org/10.1070/SM1971v013n03ABEH003693
(Mi sm3090)
 

This article is cited in 1 scientific paper (total in 1 paper)

The Schaefer method in the theory of Hammerstein integral equations

P. P. Zabreiko
References:
Abstract: The Hammerstein integral equation
\begin{equation} x(t)=\int_\Omega k(t,s)f[s, x(s)]\,dt+g(t) \end{equation}
is studied. It is assumed that the linear integral operator $K$ with symmetric kernel $k(t,s)$ acts and is completely continuous or the Hilbert space $H=L_2$. Furthermore, it is assumed that $E_0$ and $E$ ($E_0\subset E\subset H$) are ideal spaces for which the following conditions are fulfilled: a) the operator $K$ acts on the dual space $E'_0$; b) the eigenfunctions of $K$ lie in $E_0$; c) the linear span of the eigenfunctions of $K$ is dense in $E_0$ in the sense of $o$-covergence; d) the operator $~K$ acts from $E_0$ to $E'_0$ (and is completely continuous); e) the operator $f$ acts from $E_0$ to $E'_0$ and transforms bounded sets into $E_0$-weakly sequentially compact sets (acts from $E_0$ to $E'_0$). It is proved that under these hypotheses in the case of a positive definite $K$ a sufficient condition for the solvability of equation $(1)$ is the inequality
\begin{equation} uf(s,u)\leqslant au^2+\omega(s,u) \end{equation}
where $a\lambda<1$ ($\lambda$ is the largest eigenvalue of $K$) and $\omega (s,u)$ contains terms that grow at infinity more slowly than $u^2$.
Bibliography: 10 titles.
Received: 12.03.1970
Bibliographic databases:
UDC: 517.948.33
MSC: Primary 45G05; Secondary 45A05, 46E30, 47G05, 47H15
Language: English
Original paper language: Russian
Citation: P. P. Zabreiko, “The Schaefer method in the theory of Hammerstein integral equations”, Math. USSR-Sb., 13:3 (1971), 451–471
Citation in format AMSBIB
\Bibitem{Zab71}
\by P.~P.~Zabreiko
\paper The Schaefer method in the theory of Hammerstein integral equations
\jour Math. USSR-Sb.
\yr 1971
\vol 13
\issue 3
\pages 451--471
\mathnet{http://mi.mathnet.ru/eng/sm3090}
\crossref{https://doi.org/10.1070/SM1971v013n03ABEH003693}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=433170}
\zmath{https://zbmath.org/?q=an:0251.45009}
Linking options:
  • https://www.mathnet.ru/eng/sm3090
  • https://doi.org/10.1070/SM1971v013n03ABEH003693
  • https://www.mathnet.ru/eng/sm/v126/i3/p456
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025