|
This article is cited in 5 scientific papers (total in 5 papers)
Rational approximations to convex functions with given modulus of continuity
A. P. Bulanov
Abstract:
It is shown that for any convex continuous functions $f(x)$ ($x\in[a,b]$, $-\infty<a,b<\infty$) with modulus of continuity $\omega(\delta)$ the order of approximation by rational functions does not exceed
$$
C\cdot\frac{\ln^2n}n\cdot\inf_{0<\lambda<1}\biggl\{\omega(\lambda)+M\cdot\frac{\ln^2n}n\cdot\ln\frac{b-a}\lambda\biggr\},
$$
where $C$ is an absolute constant and $M=\max|f(x)|$.
Bibliography: 6 titles.
Received: 20.03.1970
Citation:
A. P. Bulanov, “Rational approximations to convex functions with given modulus of continuity”, Math. USSR-Sb., 13:3 (1971), 473–490
Linking options:
https://www.mathnet.ru/eng/sm3094https://doi.org/10.1070/SM1971v013n03ABEH003694 https://www.mathnet.ru/eng/sm/v126/i3/p476
|
|