Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1973, Volume 20, Issue 1, Pages 85–94
DOI: https://doi.org/10.1070/SM1973v020n01ABEH001844
(Mi sm3105)
 

This article is cited in 1 scientific paper (total in 1 paper)

Q-compactifications of metric spaces

A. V. Arkhangel'skii
References:
Abstract: For $Q$-spaces (also called functionally closed or Hunt spaces) there are defined in this paper two new invariants, the $q$-weight and the $q^*$-weight. With the aid of these the following results are obtained.
Theorem 1. {\it If $\tau$ is a nonmeasurable cardinal number and $X$ is a metric space of weight not exceeding $\tau$, then $X$ is homeomorphic to a closed subspace of the product of $\tau^{\aleph_0}$ copies of a real line $R$ $($i.e. X\subset_\mathrm{cl}R^{(\tau^{\aleph_0})})$}. \smallskip
Theorem~2. {\it If~$
\tau$ is a~nonmeasurable cardinal number and~$X$ is a~complete uniform space whose uniform and topological weights do not exceed~$\tau$, then~$X$ is homeomorphic to a~closed subspace of the product of $\tau^{\aleph_0}$ copies of the real line.} \smallskip
Theorem~3. {\it Let~$X$ be paracompact, $bX$~a~Hausdorff compactification of~$X$, and~$\tau$ a~nonmeasurable cardinal number such that the weight of~$X$ does not exceed~$\tau$ and~$X$ is the intersection of a~family of not more than~$\tau$ open subsets of~$bX$. Then~$X$ is homeomorphic to a~closed subspace of the product of $\tau^{\aleph_0}$ copies of the real line.}
Bibliography: 8 titles.
Received: 29.06.1972
Bibliographic databases:
UDC: 513.831
MSC: Primary 54D35, 54E35, 54A25; Secondary 54H05
Language: English
Original paper language: Russian
Citation: A. V. Arkhangel'skii, “Q-compactifications of metric spaces”, Math. USSR-Sb., 20:1 (1973), 85–94
Citation in format AMSBIB
\Bibitem{Ark73}
\by A.~V.~Arkhangel'skii
\paper Q-compactifications of metric spaces
\jour Math. USSR-Sb.
\yr 1973
\vol 20
\issue 1
\pages 85--94
\mathnet{http://mi.mathnet.ru/eng/sm3105}
\crossref{https://doi.org/10.1070/SM1973v020n01ABEH001844}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=339078}
\zmath{https://zbmath.org/?q=an:0276.54020}
Linking options:
  • https://www.mathnet.ru/eng/sm3105
  • https://doi.org/10.1070/SM1973v020n01ABEH001844
  • https://www.mathnet.ru/eng/sm/v133/i1/p78
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025