Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1971, Volume 14, Issue 3, Pages 399–416
DOI: https://doi.org/10.1070/SM1971v014n03ABEH002624
(Mi sm3207)
 

Transformations of multipliers for pseudodifferential operators in $L_p$

K. Tel'ner
References:
Abstract: By a transformation of multipliers we mean the operation assigning to each pseudodifferential (ps.d.) operator $K$ with symbol $K(\xi,x)$, i.e.
$$ (Ku)(x)=\int_{\mathbf R^m}K(\xi,x)e^{i\langle\xi,x\rangle}\widehat u(\xi)\,d\xi, $$
a new ps.d. operator $\Phi K$ with symbol $\varphi(\xi,x)K(\xi,x)$, i.e.
$$ (\Phi Ku)(x)=\int_{\mathbf R^m}\varphi(\xi,x)K(\xi,x)e^{i\langle\xi,x\rangle}\widehat u(\xi)\,d\xi. $$
Here $\mathbf R^m$ is $m$-dimensional Euclidean space; $x$ and $\xi$ are points in $\mathbf R^m$; $\langle\xi,x\rangle=\xi_1x_1+\dots+\xi_mx_m$; $\widehat u$ is the Fourier transform of $u$. There are given two criteria for the transformation $K\to\Phi K$ to preserve the continuity of ps.d. operators in the spaces $L_p(\mathbf R^m)$. As a corollary there are obtained conditions for the boundedness of ps.d. operators (or singular integral operators) in $ L_p$.
Bibliography: 12 titles.
Received: 06.07.1970
Bibliographic databases:
UDC: 517.43
MSC: Primary 47G05; Secondary 42A18
Language: English
Original paper language: Russian
Citation: K. Tel'ner, “Transformations of multipliers for pseudodifferential operators in $L_p$”, Math. USSR-Sb., 14:3 (1971), 399–416
Citation in format AMSBIB
\Bibitem{Tel71}
\by K.~Tel'ner
\paper Transformations of multipliers for pseudodifferential operators in~$L_p$
\jour Math. USSR-Sb.
\yr 1971
\vol 14
\issue 3
\pages 399--416
\mathnet{http://mi.mathnet.ru/eng/sm3207}
\crossref{https://doi.org/10.1070/SM1971v014n03ABEH002624}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=290200}
\zmath{https://zbmath.org/?q=an:0247.47046}
Linking options:
  • https://www.mathnet.ru/eng/sm3207
  • https://doi.org/10.1070/SM1971v014n03ABEH002624
  • https://www.mathnet.ru/eng/sm/v127/i3/p403
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025